000169968 001__ 169968 000169968 005__ 20240229133701.0 000169968 0247_ $$2doi$$a10.1016/j.jmr.2021.107033 000169968 0247_ $$2pmid$$apmid:34303117 000169968 0247_ $$2ISSN$$a0022-2364 000169968 0247_ $$2ISSN$$a1090-7807 000169968 0247_ $$2ISSN$$a1096-0856 000169968 0247_ $$2ISSN$$a1557-8968 000169968 0247_ $$2altmetric$$aaltmetric:110390169 000169968 037__ $$aDKFZ-2021-01668 000169968 041__ $$aEnglish 000169968 082__ $$a530 000169968 1001_ $$0P:(DE-He78)cb524d7857f62988258612fc095c2ae0$$aEmmerich, Julian$$b0$$eFirst author$$udkfz 000169968 245__ $$aOn the separation of susceptibility sources in quantitative susceptibility mapping: Theory and phantom validation with an in vivo application to multiple sclerosis lesions of different age. 000169968 260__ $$aAmsterdam [u.a.]$$bElsevier$$c2021 000169968 3367_ $$2DRIVER$$aarticle 000169968 3367_ $$2DataCite$$aOutput Types/Journal article 000169968 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1627384053_15261 000169968 3367_ $$2BibTeX$$aARTICLE 000169968 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000169968 3367_ $$00$$2EndNote$$aJournal Article 000169968 500__ $$a#EA:E020#LA:E020# 000169968 520__ $$aIn biological tissue, phase contrast is determined by multiple substances such as iron, myelin or calcifications. Often, these substances occur co-located within the same measurement volume. However, quantitative susceptibility mapping can solely measure the average susceptibility per voxel. To provide new insight in disease progression and mechanisms in neurological diseases, where multiple processes such as demyelination and iron accumulation occur simultaneously in the same location, a separation of susceptibility sources is desirable to disentangle the underlying susceptibility proportions.The basic concept of separating the susceptibility effects from sources with different sign within one voxel is to include information on relaxation rate ΔR2∗ in the quantitative susceptibility mapping reconstruction pipeline. The presented reconstruction algorithm is implemented as a constrained minimization problem and solved using conjugate gradients. The algorithm is evaluated using a software phantom and validated in MRI measurements with a phantom containing mixtures of microscopic positive and negative susceptibility sources. Data from three multiple sclerosis patients are used to show in vivo feasibility.In numerical simulations, the feasibility of disentangling susceptibility sources within the same voxel was confirmed provided the critera of the static dephasing regime were fulfilled. In phantom experiments, the magnitude decay kernel, which is an essential reconstruction parameter of the algorithm, was determined to be Dm=194.5T-1s-1ppm-1, and susceptibility sources could be separated in MRI measurement data.In conclusion, in this study a detailed description of the implementation of an algorithm for the separation of positive and negative susceptibility sources within the same volume element as well as its limitations is presented and validated quantitatively in both simulation and phantom experiments for the first time. An application to multiple sclerosis lesions shows promising results for in vivo usability. 000169968 536__ $$0G:(DE-HGF)POF4-315$$a315 - Bildgebung und Radioonkologie (POF4-315)$$cPOF4-315$$fPOF IV$$x0 000169968 588__ $$aDataset connected to CrossRef, PubMed, , Journals: inrepo01.inet.dkfz-heidelberg.de 000169968 650_7 $$2Other$$aMagnetic susceptibility 000169968 650_7 $$2Other$$aMicrostructure 000169968 650_7 $$2Other$$aRelaxation rate 000169968 650_7 $$2Other$$aSource separation 000169968 650_7 $$2Other$$aStatic dephasing regime 000169968 7001_ $$0P:(DE-He78)29b2f01310f7022916255ddba2750f9b$$aBachert, Peter$$b1$$udkfz 000169968 7001_ $$0P:(DE-He78)022611a2317e4de40fd912e0a72293a8$$aLadd, Mark E$$b2$$udkfz 000169968 7001_ $$0P:(DE-He78)4e04dcea1b6a4449a8fa005bcf36322b$$aStraub, Sina$$b3$$eLast author$$udkfz 000169968 773__ $$0PERI:(DE-600)1469665-4$$a10.1016/j.jmr.2021.107033$$gVol. 330, p. 107033 -$$p107033$$tJournal of magnetic resonance$$v330$$x1090-7807$$y2021 000169968 909CO $$ooai:inrepo02.dkfz.de:169968$$pVDB 000169968 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)cb524d7857f62988258612fc095c2ae0$$aDeutsches Krebsforschungszentrum$$b0$$kDKFZ 000169968 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)29b2f01310f7022916255ddba2750f9b$$aDeutsches Krebsforschungszentrum$$b1$$kDKFZ 000169968 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)022611a2317e4de40fd912e0a72293a8$$aDeutsches Krebsforschungszentrum$$b2$$kDKFZ 000169968 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)4e04dcea1b6a4449a8fa005bcf36322b$$aDeutsches Krebsforschungszentrum$$b3$$kDKFZ 000169968 9131_ $$0G:(DE-HGF)POF4-315$$1G:(DE-HGF)POF4-310$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vBildgebung und Radioonkologie$$x0 000169968 9141_ $$y2021 000169968 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2021-01-29$$wger 000169968 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ MAGN RESON : 2019$$d2021-01-29 000169968 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-29 000169968 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-29 000169968 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-01-29 000169968 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-01-29 000169968 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-29 000169968 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2021-01-29 000169968 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-29 000169968 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-01-29 000169968 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-29 000169968 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-29 000169968 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-01-29 000169968 9201_ $$0I:(DE-He78)E020-20160331$$kE020$$lE020 Med. Physik in der Radiologie$$x0 000169968 980__ $$ajournal 000169968 980__ $$aVDB 000169968 980__ $$aI:(DE-He78)E020-20160331 000169968 980__ $$aUNRESTRICTED