000170010 001__ 170010
000170010 005__ 20240229133702.0
000170010 0247_ $$2doi$$a10.1002/mrm.28948
000170010 0247_ $$2pmid$$apmid:34313340
000170010 0247_ $$2ISSN$$a0740-3194
000170010 0247_ $$2ISSN$$a1522-2594
000170010 0247_ $$2altmetric$$aaltmetric:110537754
000170010 037__ $$aDKFZ-2021-01704
000170010 041__ $$aEnglish
000170010 082__ $$a610
000170010 1001_ $$0P:(DE-He78)549e123a16abe980dac951ef402f70ec$$aSchmidt, Simon$$b0$$eFirst author$$udkfz
000170010 245__ $$aPhase-contrast acceleration mapping with synchronized encoding.
000170010 260__ $$aNew York, NY [u.a.]$$bWiley-Liss$$c2021
000170010 3367_ $$2DRIVER$$aarticle
000170010 3367_ $$2DataCite$$aOutput Types/Journal article
000170010 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1642172024_14743
000170010 3367_ $$2BibTeX$$aARTICLE
000170010 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000170010 3367_ $$00$$2EndNote$$aJournal Article
000170010 500__ $$a#EA:E020#LA:E020# /2021 Dec;86(6):3201-3210
000170010 520__ $$aTo develop a phase-contrast (PC) -based method for direct and unbiased quantification of the acceleration vector field by synchronization of the spatial and acceleration encoding time points. The proposed method explicitly aims at in-vitro applications, requiring high measurement accuracy, as well as the validation of clinically relevant acceleration-encoded sequences.A velocity-encoded sequence with synchronized encoding (SYNC SPI) was modified to allow direct acceleration mapping by replacing the bipolar encoding gradients with tripolar gradient waveforms. The proposed method was validated in two in-vitro flow cases: a rotation and a stenosis phantom. The thereby obtained velocity and acceleration vector fields were quantitatively compared to those acquired with conventional PC methods, as well as to theoretical data.The rotation phantom study revealed a systematic bias of the conventional PC acceleration mapping method that resulted in an average pixel-wise relative angle between the measured and theoretical vector field of (7.8 ± 3.2)°, which was reduced to (-0.4 ± 2.7)° for the proposed SYNC SPI method. Furthermore, flow features in the stenosis phantom were displaced by up to 10 mm in the conventional PC data compared with the acceleration-encoded SYNC SPI data.This work successfully demonstrates a highly accurate method for direct acceleration mapping. It thus complements the existing velocity-encoded SYNC SPI method to enable the direct and unbiased quantification of both the velocity and acceleration vector field for in vitro studies. Hence, this method can be used for the validation of conventional acceleration-encoded PC methods applicable in-vivo.
000170010 536__ $$0G:(DE-HGF)POF4-315$$a315 - Bildgebung und Radioonkologie (POF4-315)$$cPOF4-315$$fPOF IV$$x0
000170010 588__ $$aDataset connected to CrossRef, PubMed, , Journals: inrepo01.inet.dkfz-heidelberg.de
000170010 650_7 $$2Other$$aacceleration mapping
000170010 650_7 $$2Other$$adisplacement artifact
000170010 650_7 $$2Other$$aflow MRI
000170010 650_7 $$2Other$$aphase-contrast magnetic resonance imaging
000170010 7001_ $$00000-0003-0133-8348$$aBruschewski, Martin$$b1
000170010 7001_ $$0P:(DE-He78)6f29c4a184536f50b8629af3480c5932$$aFlassbeck, Sebastian$$b2
000170010 7001_ $$aJohn, Kristine$$b3
000170010 7001_ $$aGrundmann, Sven$$b4
000170010 7001_ $$0P:(DE-He78)022611a2317e4de40fd912e0a72293a8$$aLadd, Mark E$$b5$$udkfz
000170010 7001_ $$0P:(DE-He78)19e2d877276b0e5eec11cdfc1789a55e$$aSchmitter, Sebastian$$b6$$eLast author$$udkfz
000170010 773__ $$0PERI:(DE-600)1493786-4$$a10.1002/mrm.28948$$gp. mrm.28948$$n6$$p3201-3210$$tMagnetic resonance in medicine$$v86$$x1522-2594$$y2021
000170010 909CO $$ooai:inrepo02.dkfz.de:170010$$pVDB
000170010 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)549e123a16abe980dac951ef402f70ec$$aDeutsches Krebsforschungszentrum$$b0$$kDKFZ
000170010 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)6f29c4a184536f50b8629af3480c5932$$aDeutsches Krebsforschungszentrum$$b2$$kDKFZ
000170010 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)022611a2317e4de40fd912e0a72293a8$$aDeutsches Krebsforschungszentrum$$b5$$kDKFZ
000170010 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)19e2d877276b0e5eec11cdfc1789a55e$$aDeutsches Krebsforschungszentrum$$b6$$kDKFZ
000170010 9131_ $$0G:(DE-HGF)POF4-315$$1G:(DE-HGF)POF4-310$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vBildgebung und Radioonkologie$$x0
000170010 9141_ $$y2021
000170010 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2021-01-27$$wger
000170010 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2021-01-27$$wger
000170010 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bMAGN RESON MED : 2019$$d2021-01-27
000170010 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-27
000170010 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-27
000170010 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-27
000170010 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2021-01-27
000170010 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-27
000170010 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2021-01-27
000170010 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine$$d2021-01-27
000170010 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2021-01-27
000170010 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-27
000170010 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-27
000170010 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-01-27
000170010 9201_ $$0I:(DE-He78)E020-20160331$$kE020$$lE020 Med. Physik in der Radiologie$$x0
000170010 980__ $$ajournal
000170010 980__ $$aVDB
000170010 980__ $$aI:(DE-He78)E020-20160331
000170010 980__ $$aUNRESTRICTED