000170049 001__ 170049
000170049 005__ 20240229133703.0
000170049 0247_ $$2doi$$a10.1093/eurheartj/ehab309
000170049 0247_ $$2pmid$$apmid:34120177
000170049 0247_ $$2pmc$$apmc:PMC8248998
000170049 0247_ $$2ISSN$$a0195-668X
000170049 0247_ $$2ISSN$$a1522-9645
000170049 0247_ $$2altmetric$$aaltmetric:107584429
000170049 037__ $$aDKFZ-2021-01718
000170049 041__ $$aEnglish
000170049 082__ $$a610
000170049 1001_ $$agroup, SCORE2 working$$b0
000170049 245__ $$aSCORE2 risk prediction algorithms: new models to estimate 10-year risk of cardiovascular disease in Europe.
000170049 260__ $$aOxford$$bOxford University Press$$c2021
000170049 3367_ $$2DRIVER$$aarticle
000170049 3367_ $$2DataCite$$aOutput Types/Journal article
000170049 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1628155214_25573
000170049 3367_ $$2BibTeX$$aARTICLE
000170049 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000170049 3367_ $$00$$2EndNote$$aJournal Article
000170049 520__ $$aThe aim of this study was to develop, validate, and illustrate an updated prediction model (SCORE2) to estimate 10-year fatal and non-fatal cardiovascular disease (CVD) risk in individuals without previous CVD or diabetes aged 40-69 years in Europe.We derived risk prediction models using individual-participant data from 45 cohorts in 13 countries (677 684 individuals, 30 121 CVD events). We used sex-specific and competing risk-adjusted models, including age, smoking status, systolic blood pressure, and total- and HDL-cholesterol. We defined four risk regions in Europe according to country-specific CVD mortality, recalibrating models to each region using expected incidences and risk factor distributions. Region-specific incidence was estimated using CVD mortality and incidence data on 10 776 466 individuals. For external validation, we analysed data from 25 additional cohorts in 15 European countries (1 133 181 individuals, 43 492 CVD events). After applying the derived risk prediction models to external validation cohorts, C-indices ranged from 0.67 (0.65-0.68) to 0.81 (0.76-0.86). Predicted CVD risk varied several-fold across European regions. For example, the estimated 10-year CVD risk for a 50-year-old smoker, with a systolic blood pressure of 140 mmHg, total cholesterol of 5.5 mmol/L, and HDL-cholesterol of 1.3 mmol/L, ranged from 5.9% for men in low-risk countries to 14.0% for men in very high-risk countries, and from 4.2% for women in low-risk countries to 13.7% for women in very high-risk countries.SCORE2-a new algorithm derived, calibrated, and validated to predict 10-year risk of first-onset CVD in European populations-enhances the identification of individuals at higher risk of developing CVD across Europe.
000170049 536__ $$0G:(DE-HGF)POF4-313$$a313 - Krebsrisikofaktoren und Prävention (POF4-313)$$cPOF4-313$$fPOF IV$$x0
000170049 588__ $$aDataset connected to CrossRef, PubMed, , Journals: inrepo01.inet.dkfz-heidelberg.de
000170049 650_7 $$2Other$$a10-year CVD risk
000170049 650_7 $$2Other$$aCardiovascular disease
000170049 650_7 $$2Other$$aPrimary prevention
000170049 650_7 $$2Other$$aRisk prediction
000170049 7001_ $$aESC Cardiovascular risk collaboration$$b1$$eCollaboration Author
000170049 7001_ $$aHageman, Steven$$b2
000170049 7001_ $$aPennells, Lisa$$b3
000170049 7001_ $$aOjeda, Francisco$$b4
000170049 7001_ $$aKaptoge, Stephen$$b5
000170049 7001_ $$aKuulasmaa, Kari$$b6
000170049 7001_ $$ade Vries, Tamar$$b7
000170049 7001_ $$aXu, Zhe$$b8
000170049 7001_ $$aKee, Frank$$b9
000170049 7001_ $$aChung, Ryan$$b10
000170049 7001_ $$aWood, Angela$$b11
000170049 7001_ $$aMcEvoy, John William$$b12
000170049 7001_ $$aVeronesi, Giovanni$$b13
000170049 7001_ $$aBolton, Thomas$$b14
000170049 7001_ $$aDendale, Paul$$b15
000170049 7001_ $$aFerence, Brian A$$b16
000170049 7001_ $$aHalle, Martin$$b17
000170049 7001_ $$aTimmis, Adam$$b18
000170049 7001_ $$aVardas, Panos$$b19
000170049 7001_ $$aDanesh, John$$b20
000170049 7001_ $$aGraham, Ian$$b21
000170049 7001_ $$aSalomaa, Veikko$$b22
000170049 7001_ $$aVisseren, Frank$$b23
000170049 7001_ $$aDe Bacquer, Dirk$$b24
000170049 7001_ $$aBlankenberg, Stefan$$b25
000170049 7001_ $$aDorresteijn, Jannick$$b26
000170049 7001_ $$aDi Angelantonio, Emanuele$$b27
000170049 7001_ $$0P:(DE-He78)4b2dc91c9d1ac33a1c0e0777d0c1697a$$aKaaks, Rudolf$$b28
000170049 7001_ $$0P:(DE-He78)fb68a9386399d72d84f7f34cfc6048b4$$aKatzke, Verena$$b29
000170049 773__ $$0PERI:(DE-600)2001908-7$$a10.1093/eurheartj/ehab309$$gVol. 42, no. 25, p. 2439 - 2454$$n25$$p2439 - 2454$$tEuropean heart journal$$v42$$x1522-9645$$y2021
000170049 909CO $$ooai:inrepo02.dkfz.de:170049$$pVDB
000170049 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)4b2dc91c9d1ac33a1c0e0777d0c1697a$$aDeutsches Krebsforschungszentrum$$b28$$kDKFZ
000170049 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)fb68a9386399d72d84f7f34cfc6048b4$$aDeutsches Krebsforschungszentrum$$b29$$kDKFZ
000170049 9131_ $$0G:(DE-HGF)POF4-313$$1G:(DE-HGF)POF4-310$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vKrebsrisikofaktoren und Prävention$$x0
000170049 9141_ $$y2021
000170049 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2021-01-27$$wger
000170049 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-27
000170049 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-27
000170049 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2021-01-27
000170049 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-27
000170049 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-27
000170049 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2021-01-27
000170049 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine$$d2021-01-27
000170049 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2021-01-27
000170049 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-27
000170049 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-27
000170049 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bEUR HEART J : 2019$$d2021-01-27
000170049 915__ $$0StatID:(DE-HGF)9920$$2StatID$$aIF >= 20$$bEUR HEART J : 2019$$d2021-01-27
000170049 9201_ $$0I:(DE-He78)C020-20160331$$kC020$$lC020 Epidemiologie von Krebs$$x0
000170049 980__ $$ajournal
000170049 980__ $$aVDB
000170049 980__ $$aI:(DE-He78)C020-20160331
000170049 980__ $$aUNRESTRICTED