001     170049
005     20240229133703.0
024 7 _ |a 10.1093/eurheartj/ehab309
|2 doi
024 7 _ |a pmid:34120177
|2 pmid
024 7 _ |a pmc:PMC8248998
|2 pmc
024 7 _ |a 0195-668X
|2 ISSN
024 7 _ |a 1522-9645
|2 ISSN
024 7 _ |a altmetric:107584429
|2 altmetric
037 _ _ |a DKFZ-2021-01718
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a group, SCORE2 working
|b 0
245 _ _ |a SCORE2 risk prediction algorithms: new models to estimate 10-year risk of cardiovascular disease in Europe.
260 _ _ |a Oxford
|c 2021
|b Oxford University Press
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1628155214_25573
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The aim of this study was to develop, validate, and illustrate an updated prediction model (SCORE2) to estimate 10-year fatal and non-fatal cardiovascular disease (CVD) risk in individuals without previous CVD or diabetes aged 40-69 years in Europe.We derived risk prediction models using individual-participant data from 45 cohorts in 13 countries (677 684 individuals, 30 121 CVD events). We used sex-specific and competing risk-adjusted models, including age, smoking status, systolic blood pressure, and total- and HDL-cholesterol. We defined four risk regions in Europe according to country-specific CVD mortality, recalibrating models to each region using expected incidences and risk factor distributions. Region-specific incidence was estimated using CVD mortality and incidence data on 10 776 466 individuals. For external validation, we analysed data from 25 additional cohorts in 15 European countries (1 133 181 individuals, 43 492 CVD events). After applying the derived risk prediction models to external validation cohorts, C-indices ranged from 0.67 (0.65-0.68) to 0.81 (0.76-0.86). Predicted CVD risk varied several-fold across European regions. For example, the estimated 10-year CVD risk for a 50-year-old smoker, with a systolic blood pressure of 140 mmHg, total cholesterol of 5.5 mmol/L, and HDL-cholesterol of 1.3 mmol/L, ranged from 5.9% for men in low-risk countries to 14.0% for men in very high-risk countries, and from 4.2% for women in low-risk countries to 13.7% for women in very high-risk countries.SCORE2-a new algorithm derived, calibrated, and validated to predict 10-year risk of first-onset CVD in European populations-enhances the identification of individuals at higher risk of developing CVD across Europe.
536 _ _ |a 313 - Krebsrisikofaktoren und Prävention (POF4-313)
|0 G:(DE-HGF)POF4-313
|c POF4-313
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo01.inet.dkfz-heidelberg.de
650 _ 7 |a 10-year CVD risk
|2 Other
650 _ 7 |a Cardiovascular disease
|2 Other
650 _ 7 |a Primary prevention
|2 Other
650 _ 7 |a Risk prediction
|2 Other
700 1 _ |a ESC Cardiovascular risk collaboration
|b 1
|e Collaboration Author
700 1 _ |a Hageman, Steven
|b 2
700 1 _ |a Pennells, Lisa
|b 3
700 1 _ |a Ojeda, Francisco
|b 4
700 1 _ |a Kaptoge, Stephen
|b 5
700 1 _ |a Kuulasmaa, Kari
|b 6
700 1 _ |a de Vries, Tamar
|b 7
700 1 _ |a Xu, Zhe
|b 8
700 1 _ |a Kee, Frank
|b 9
700 1 _ |a Chung, Ryan
|b 10
700 1 _ |a Wood, Angela
|b 11
700 1 _ |a McEvoy, John William
|b 12
700 1 _ |a Veronesi, Giovanni
|b 13
700 1 _ |a Bolton, Thomas
|b 14
700 1 _ |a Dendale, Paul
|b 15
700 1 _ |a Ference, Brian A
|b 16
700 1 _ |a Halle, Martin
|b 17
700 1 _ |a Timmis, Adam
|b 18
700 1 _ |a Vardas, Panos
|b 19
700 1 _ |a Danesh, John
|b 20
700 1 _ |a Graham, Ian
|b 21
700 1 _ |a Salomaa, Veikko
|b 22
700 1 _ |a Visseren, Frank
|b 23
700 1 _ |a De Bacquer, Dirk
|b 24
700 1 _ |a Blankenberg, Stefan
|b 25
700 1 _ |a Dorresteijn, Jannick
|b 26
700 1 _ |a Di Angelantonio, Emanuele
|b 27
700 1 _ |a Kaaks, Rudolf
|0 P:(DE-He78)4b2dc91c9d1ac33a1c0e0777d0c1697a
|b 28
700 1 _ |a Katzke, Verena
|0 P:(DE-He78)fb68a9386399d72d84f7f34cfc6048b4
|b 29
773 _ _ |a 10.1093/eurheartj/ehab309
|g Vol. 42, no. 25, p. 2439 - 2454
|0 PERI:(DE-600)2001908-7
|n 25
|p 2439 - 2454
|t European heart journal
|v 42
|y 2021
|x 1522-9645
909 C O |o oai:inrepo02.dkfz.de:170049
|p VDB
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 28
|6 P:(DE-He78)4b2dc91c9d1ac33a1c0e0777d0c1697a
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 29
|6 P:(DE-He78)fb68a9386399d72d84f7f34cfc6048b4
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-313
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Krebsrisikofaktoren und Prävention
|x 0
914 1 _ |y 2021
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2021-01-27
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2021-01-27
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-01-27
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b EUR HEART J : 2019
|d 2021-01-27
915 _ _ |a IF >= 20
|0 StatID:(DE-HGF)9920
|2 StatID
|b EUR HEART J : 2019
|d 2021-01-27
920 1 _ |0 I:(DE-He78)C020-20160331
|k C020
|l C020 Epidemiologie von Krebs
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)C020-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21