001     170080
005     20240229133704.0
024 7 _ |a 10.1038/s41375-021-01323-0
|2 doi
024 7 _ |a pmid:34316017
|2 pmid
024 7 _ |a 0887-6924
|2 ISSN
024 7 _ |a 1476-5551
|2 ISSN
024 7 _ |a altmetric:110580907
|2 altmetric
037 _ _ |a DKFZ-2021-01743
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Rücker, Frank G
|b 0
245 _ _ |a Molecular landscape and prognostic impact of FLT3-ITD insertion site in acute myeloid leukemia: RATIFY study results.
260 _ _ |a London
|c 2022
|b Springer Nature
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1642411126_22337
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a 2022 Jan;36(1):90-99
520 _ _ |a In acute myeloid leukemia (AML) internal tandem duplications of the FLT3 gene (FLT3-ITD) are associated with poor prognosis. Retrospectively, we investigated the prognostic and predictive impact of FLT3-ITD insertion site (IS) in 452 patients randomized within the RATIFY trial, which evaluated midostaurin additionally to intensive chemotherapy. Next-generation sequencing identified 908 ITDs, with 643 IS in the juxtamembrane domain (JMD) and 265 IS in the tyrosine kinase domain-1 (TKD1). According to IS, patients were categorized as JMDsole (n = 251, 55%), JMD and TKD1 (JMD/TKD1; n = 117, 26%), and TKD1sole (n = 84, 19%). While clinical variables did not differ among the 3 groups, NPM1 mutation was correlated with JMDsole (P = 0.028). Overall survival (OS) differed significantly, with estimated 4-year OS probabilities of 0.44, 0.50, and 0.30 for JMDsole, JMD/TKD1, and TKD1sole, respectively (P = 0.032). Multivariate (cause-specific) Cox models for OS and cumulative incidence of relapse using allogeneic hematopoietic cell transplantation (HCT) in first complete remission as a time-dependent variable identified TKD1sole as unfavorable and HCT as favorable factors. In addition, Midostaurin exerted a significant benefit only for JMDsole. Our results confirm the distinct molecular heterogeneity of FLT3-ITD and the negative prognostic impact of TKD1 IS in AML that was not overcome by midostaurin.
536 _ _ |a 313 - Krebsrisikofaktoren und Prävention (POF4-313)
|0 G:(DE-HGF)POF4-313
|c POF4-313
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo01.inet.dkfz-heidelberg.de
700 1 _ |a Du, Ling
|b 1
700 1 _ |a Luck, Tamara J
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Benner, Axel
|0 P:(DE-He78)e15dfa1260625c69d6690a197392a994
|b 3
|u dkfz
700 1 _ |a Krzykalla, Julia
|0 P:(DE-He78)5a7a75d1b29b770f98f1bb2062fc3df9
|b 4
|u dkfz
700 1 _ |a Gathmann, Insa
|b 5
700 1 _ |a Voso, Maria Teresa
|0 0000-0002-6164-4761
|b 6
700 1 _ |a Amadori, Sergio
|b 7
700 1 _ |a Prior, Thomas W
|b 8
700 1 _ |a Brandwein, Joseph M
|b 9
700 1 _ |a Appelbaum, Frederick R
|b 10
700 1 _ |a Medeiros, Bruno C
|0 0000-0001-6972-8137
|b 11
700 1 _ |a Tallman, Martin S
|b 12
700 1 _ |a Savoie, Lynn
|b 13
700 1 _ |a Sierra, Jorge
|b 14
700 1 _ |a Pallaud, Celine
|b 15
700 1 _ |a Sanz, Miguel A
|0 0000-0003-1489-1177
|b 16
700 1 _ |a Jansen, Joop H
|b 17
700 1 _ |a Niederwieser, Dietger
|0 0000-0002-4737-1103
|b 18
700 1 _ |a Fischer, Thomas
|b 19
700 1 _ |a Ehninger, Gerhard
|b 20
700 1 _ |a Heuser, Michael
|0 0000-0001-5318-9044
|b 21
700 1 _ |a Ganser, Arnold
|b 22
700 1 _ |a Bullinger, Lars
|b 23
700 1 _ |a Larson, Richard A
|0 0000-0001-9168-3203
|b 24
700 1 _ |a Bloomfield, Clara D
|0 0000-0001-5465-7591
|b 25
700 1 _ |a Stone, Richard M
|b 26
700 1 _ |a Döhner, Hartmut
|b 27
700 1 _ |a Thiede, Christian
|0 0000-0003-1241-2048
|b 28
700 1 _ |a Döhner, Konstanze
|0 0000-0002-2261-9862
|b 29
773 _ _ |a 10.1038/s41375-021-01323-0
|0 PERI:(DE-600)2008023-2
|n 1
|p 90-99
|t Leukemia
|v 36
|y 2022
|x 1476-5551
909 C O |p VDB
|o oai:inrepo02.dkfz.de:170080
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 3
|6 P:(DE-He78)e15dfa1260625c69d6690a197392a994
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 4
|6 P:(DE-He78)5a7a75d1b29b770f98f1bb2062fc3df9
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-313
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Krebsrisikofaktoren und Prävention
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2021-01-29
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2022-11-18
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2022-11-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2022-11-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2022-11-18
920 1 _ |0 I:(DE-He78)C060-20160331
|k C060
|l C060 Biostatistik
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)C060-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21