000170194 001__ 170194
000170194 005__ 20240229133707.0
000170194 0247_ $$2doi$$a10.1038/s41598-021-95420-w
000170194 0247_ $$2pmid$$apmid:34376748
000170194 0247_ $$2altmetric$$aaltmetric:111596033
000170194 037__ $$aDKFZ-2021-01817
000170194 041__ $$aEnglish
000170194 082__ $$a600
000170194 1001_ $$aStoja, Endri$$b0
000170194 245__ $$aImproving magnetic resonance imaging with smart and thin metasurfaces.
000170194 260__ $$a[London]$$bMacmillan Publishers Limited, part of Springer Nature$$c2021
000170194 3367_ $$2DRIVER$$aarticle
000170194 3367_ $$2DataCite$$aOutput Types/Journal article
000170194 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1629110937_30626
000170194 3367_ $$2BibTeX$$aARTICLE
000170194 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000170194 3367_ $$00$$2EndNote$$aJournal Article
000170194 520__ $$aOver almost five decades of development and improvement, Magnetic Resonance Imaging (MRI) has become a rich and powerful, non-invasive technique in medical imaging, yet not reaching its physical limits. Technical and physiological restrictions constrain physically feasible developments. A common solution to improve imaging speed and resolution is to use higher field strengths, which also has subtle and potentially harmful implications. However, patient safety is to be considered utterly important at all stages of research and clinical routine. Here we show that dynamic metamaterials are a promising solution to expand the potential of MRI and to overcome some limitations. A thin, smart, non-linear metamaterial is presented that enhances the imaging performance and increases the signal-to-noise ratio in 3T MRI significantly (up to eightfold), whilst the transmit field is not affected due to self-detuning and, thus, patient safety is also assured. This self-detuning works without introducing any additional overhead related to MRI-compatible electronic control components or active (de-)tuning mechanisms. The design paradigm, simulation results, on-bench characterization, and MRI experiments using homogeneous and structural phantoms are described. The suggested single-layer metasurface paves the way for conformal and patient-specific manufacturing, which was not possible before due to typically bulky and rigid metamaterial structures.
000170194 536__ $$0G:(DE-HGF)POF4-315$$a315 - Bildgebung und Radioonkologie (POF4-315)$$cPOF4-315$$fPOF IV$$x0
000170194 588__ $$aDataset connected to CrossRef, PubMed, , Journals: inrepo01.inet.dkfz-heidelberg.de
000170194 7001_ $$aKonstandin, Simon$$b1
000170194 7001_ $$aPhilipp, Dennis$$b2
000170194 7001_ $$aWilke, Robin N$$b3
000170194 7001_ $$aBetancourt, Diego$$b4
000170194 7001_ $$aBertuch, Thomas$$b5
000170194 7001_ $$0P:(DE-He78)284abacf4d91fdb9419b7b33df1f52a1$$aJenne, Jürgen$$b6$$udkfz
000170194 7001_ $$0P:(DE-He78)b8678d0841b587098d787b52c38ba439$$aUmathum, Reiner$$b7$$udkfz
000170194 7001_ $$aGünther, Matthias$$b8
000170194 773__ $$0PERI:(DE-600)2615211-3$$a10.1038/s41598-021-95420-w$$gVol. 11, no. 1, p. 16179$$n1$$p16179$$tScientific reports$$v11$$x2045-2322$$y2021
000170194 909CO $$ooai:inrepo02.dkfz.de:170194$$pVDB
000170194 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)284abacf4d91fdb9419b7b33df1f52a1$$aDeutsches Krebsforschungszentrum$$b6$$kDKFZ
000170194 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)b8678d0841b587098d787b52c38ba439$$aDeutsches Krebsforschungszentrum$$b7$$kDKFZ
000170194 9131_ $$0G:(DE-HGF)POF4-315$$1G:(DE-HGF)POF4-310$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vBildgebung und Radioonkologie$$x0
000170194 9141_ $$y2021
000170194 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSCI REP-UK : 2019$$d2021-02-03
000170194 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-02-03
000170194 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-02-03
000170194 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2021-02-03
000170194 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2021-02-03
000170194 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2021-02-03
000170194 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review$$d2021-02-03
000170194 915__ $$0LIC:(DE-HGF)CCBYNV$$2V:(DE-HGF)$$aCreative Commons Attribution CC BY (No Version)$$bDOAJ$$d2021-02-03
000170194 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-02-03
000170194 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-02-03
000170194 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-02-03
000170194 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-03
000170194 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2021-02-03
000170194 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-02-03
000170194 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record$$d2021-02-03
000170194 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2021-02-03
000170194 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-03
000170194 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-02-03
000170194 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-02-03
000170194 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2021-02-03
000170194 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2021-02-03
000170194 9201_ $$0I:(DE-He78)E020-20160331$$kE020$$lE020 Med. Physik in der Radiologie$$x0
000170194 980__ $$ajournal
000170194 980__ $$aVDB
000170194 980__ $$aI:(DE-He78)E020-20160331
000170194 980__ $$aUNRESTRICTED