001     170213
005     20240229133708.0
024 7 _ |a 10.1016/j.ejca.2021.07.012
|2 doi
024 7 _ |a pmid:34391053
|2 pmid
024 7 _ |a 0014-2964
|2 ISSN
024 7 _ |a 0959-8049
|2 ISSN
024 7 _ |a 1879-0852
|2 ISSN
024 7 _ |a (1990)
|2 ISSN
024 7 _ |a 1879-2995
|2 ISSN
024 7 _ |a (1965)
|2 ISSN
024 7 _ |a altmetric:111832748
|2 altmetric
037 _ _ |a DKFZ-2021-01821
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Kuntz, Sara Andrea
|0 P:(DE-He78)52f31629a970c50c559f08fddd957a3b
|b 0
|e First author
245 _ _ |a Gastrointestinal cancer classification and prognostication from histology using deep learning: Systematic review.
260 _ _ |a Amsterdam [u.a.]
|c 2021
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1639480863_28887
|2 PUB:(DE-HGF)
|x Review Article
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a #EA:C140#LA:C140#
520 _ _ |a Gastrointestinal cancers account for approximately 20% of all cancer diagnoses and are responsible for 22.5% of cancer deaths worldwide. Artificial intelligence-based diagnostic support systems, in particular convolutional neural network (CNN)-based image analysis tools, have shown great potential in medical computer vision. In this systematic review, we summarise recent studies reporting CNN-based approaches for digital biomarkers for characterization and prognostication of gastrointestinal cancer pathology.Pubmed and Medline were screened for peer-reviewed papers dealing with CNN-based gastrointestinal cancer analyses from histological slides, published between 2015 and 2020.Seven hundred and ninety titles and abstracts were screened, and 58 full-text articles were assessed for eligibility.Sixteen publications fulfilled our inclusion criteria dealing with tumor or precursor lesion characterization or prognostic and predictive biomarkers: 14 studies on colorectal or rectal cancer, three studies on gastric cancer and none on esophageal cancer. These studies were categorised according to their end-points: polyp characterization, tumor characterization and patient outcome. Regarding the translation into clinical practice, we identified several studies demonstrating generalization of the classifier with external tests and comparisons with pathologists, but none presenting clinical implementation.Results of recent studies on CNN-based image analysis in gastrointestinal cancer pathology are promising, but studies were conducted in observational and retrospective settings. Large-scale trials are needed to assess performance and predict clinical usefulness. Furthermore, large-scale trials are required for approval of CNN-based prediction models as medical devices.
536 _ _ |a 313 - Krebsrisikofaktoren und Prävention (POF4-313)
|0 G:(DE-HGF)POF4-313
|c POF4-313
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo01.inet.dkfz-heidelberg.de
650 _ 7 |a Artificial intelligence
|2 Other
650 _ 7 |a Colorectal cancer
|2 Other
650 _ 7 |a Convolutional neural network
|2 Other
650 _ 7 |a Deep learning
|2 Other
650 _ 7 |a Digital biomarker
|2 Other
650 _ 7 |a Esophageal cancer
|2 Other
650 _ 7 |a Gastric cancer
|2 Other
650 _ 7 |a Gastrointestinal cancer
|2 Other
650 _ 7 |a Pathology
|2 Other
700 1 _ |a Krieghoff-Henning, Eva
|0 P:(DE-He78)8e2078af783ff2be822e7799c43bc86a
|b 1
700 1 _ |a Kather, Jakob N
|b 2
700 1 _ |a Jutzi, Tanja
|0 P:(DE-He78)23fc125c7c54492d146e72389bab5208
|b 3
700 1 _ |a Höhn, Julia
|0 P:(DE-He78)551f38237e85bb25b4502ba8fbb88f4f
|b 4
700 1 _ |a Kiehl, Lennard
|0 P:(DE-He78)29466f5cfe110ed866c860a358a88825
|b 5
700 1 _ |a Hekler, Achim
|0 P:(DE-He78)fe1af578a870418968c5decfd626de96
|b 6
700 1 _ |a Alwers, Elizabeth
|0 P:(DE-He78)9b2a61b2abe4a64ca23b6783b7c4fe63
|b 7
700 1 _ |a von Kalle, Christof
|b 8
700 1 _ |a Fröhling, Stefan
|0 P:(DE-He78)f0144d171d26dbedb67c9db1df35629d
|b 9
|u dkfz
700 1 _ |a Utikal, Jochen S
|0 P:(DE-He78)a229f7724466e7efadf4a1ace1ff8af3
|b 10
700 1 _ |a Brenner, Hermann
|0 P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2
|b 11
700 1 _ |a Hoffmeister, Michael
|0 P:(DE-He78)6c5d058b7552d071a7fa4c5e943fff0f
|b 12
700 1 _ |a Brinker, Titus
|0 P:(DE-He78)1e33961c8780aca9b76d776d1fdc1ebb
|b 13
|e Last author
773 _ _ |a 10.1016/j.ejca.2021.07.012
|g Vol. 155, p. 200 - 215
|0 PERI:(DE-600)1468190-0
|p 200 - 215
|t European journal of cancer
|v 155
|y 2021
|x 0959-8049
909 C O |p VDB
|o oai:inrepo02.dkfz.de:170213
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 0
|6 P:(DE-He78)52f31629a970c50c559f08fddd957a3b
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 1
|6 P:(DE-He78)8e2078af783ff2be822e7799c43bc86a
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 3
|6 P:(DE-He78)23fc125c7c54492d146e72389bab5208
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 4
|6 P:(DE-He78)551f38237e85bb25b4502ba8fbb88f4f
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 5
|6 P:(DE-He78)29466f5cfe110ed866c860a358a88825
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 6
|6 P:(DE-He78)fe1af578a870418968c5decfd626de96
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 7
|6 P:(DE-He78)9b2a61b2abe4a64ca23b6783b7c4fe63
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 9
|6 P:(DE-He78)f0144d171d26dbedb67c9db1df35629d
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 10
|6 P:(DE-He78)a229f7724466e7efadf4a1ace1ff8af3
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 11
|6 P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 12
|6 P:(DE-He78)6c5d058b7552d071a7fa4c5e943fff0f
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 13
|6 P:(DE-He78)1e33961c8780aca9b76d776d1fdc1ebb
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-313
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Krebsrisikofaktoren und Prävention
|x 0
914 1 _ |y 2021
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2021-01-28
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2021-01-28
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-01-28
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b EUR J CANCER : 2019
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2021-01-28
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2021-01-28
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b EUR J CANCER : 2019
|d 2021-01-28
920 1 _ |0 I:(DE-He78)C140-20160331
|k C140
|l NWG Digitale Biomarker in der Onkologie
|x 0
920 1 _ |0 I:(DE-He78)C070-20160331
|k C070
|l C070 Klinische Epidemiologie und Alternf.
|x 1
920 1 _ |0 I:(DE-He78)A370-20160331
|k A370
|l KKE Dermatoonkologie
|x 2
920 1 _ |0 I:(DE-He78)C120-20160331
|k C120
|l Präventive Onkologie
|x 3
920 1 _ |0 I:(DE-He78)B340-20160331
|k B340
|l Translationale Medizinische Onkologie
|x 4
920 1 _ |0 I:(DE-He78)HD01-20160331
|k HD01
|l DKTK HD zentral
|x 5
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)C140-20160331
980 _ _ |a I:(DE-He78)C070-20160331
980 _ _ |a I:(DE-He78)A370-20160331
980 _ _ |a I:(DE-He78)C120-20160331
980 _ _ |a I:(DE-He78)B340-20160331
980 _ _ |a I:(DE-He78)HD01-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21