000170437 001__ 170437
000170437 005__ 20240229133713.0
000170437 0247_ $$2doi$$a10.1002/mrm.28996
000170437 0247_ $$2pmid$$apmid:34453445
000170437 0247_ $$2ISSN$$a0740-3194
000170437 0247_ $$2ISSN$$a1522-2594
000170437 0247_ $$2altmetric$$aaltmetric:112531204
000170437 037__ $$aDKFZ-2021-01930
000170437 041__ $$aEnglish
000170437 082__ $$a610
000170437 1001_ $$00000-0001-6804-6353$$aFühres, Tobit$$b0
000170437 245__ $$aEcho time dependence of biexponential and triexponential intravoxel incoherent motion parameters in the liver.
000170437 260__ $$aNew York, NY [u.a.]$$bWiley-Liss$$c2022
000170437 3367_ $$2DRIVER$$aarticle
000170437 3367_ $$2DataCite$$aOutput Types/Journal article
000170437 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1642422361_11680
000170437 3367_ $$2BibTeX$$aARTICLE
000170437 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000170437 3367_ $$00$$2EndNote$$aJournal Article
000170437 500__ $$a2022 Feb;87(2):859-871
000170437 520__ $$aIntravoxel incoherent motion (IVIM) studies are performed with different acquisition protocols. Comparing them requires knowledge of echo time (TE) dependencies. The TE-dependence of the biexponential perfusion fraction f is well-documented, unlike that of its triexponential counterparts f1 and f2 and the biexponential and triexponential pseudodiffusion coefficients D* , D 1 ∗ , and D 2 ∗ . The purpose was to investigate the TE-dependence of these parameters and to check whether the triexponential pseudodiffusion compartments are associated with arterial and venous blood.Fifteen healthy volunteers (19-58 y; mean: 24.7 y) underwent diffusion-weighted imaging of the abdomen with 24 b-values (0.2-800 s/mm2 ) at TEs of 45, 60, 75, and 90 ms. Regions of interest (ROIs) were manually drawn in the liver. One set of bi- and triexponential IVIM parameters per volunteer and TE was determined. The TE-dependence was assessed with the Kruskal-Wallis test.TE-dependence was observed for f (P < .001), f1 (P = .001), and f2 (P < .001). Their median values at the four measured TEs were: f: 0.198/0.240/0.274/0.359, f1 : 0.113/0.139/0.146/0.205, f2 : 0.115/0.155/0.182/0.194. D, D* , D 1 ∗ , and D 2 ∗ showed no significant TE-dependence. Their values were: diffusion coefficient D (10-4 mm2 /s): 9.45/9.63/9.75/9.41, biexponential D* (10-2 mm2 /s): 5.26/5.52/6.13/5.82, triexponential D 1 ∗ (10-2 mm2 /s): 1.73/2.91/2.25/2.51, triexponential D 2 ∗ (mm2 /s): 0.478/1.385/0.616/0.846.f1 and f2 show similar TE-dependence as f, ie, increase with rising TE; an effect that must be accounted for when comparing different studies. The diffusion and pseudodiffusion coefficients might be compared without TE correction. Because of the similar TE-dependence of f1 and f2 , the triexponential pseudodiffusion compartments are most probably not associated to venous and arterial blood.
000170437 536__ $$0G:(DE-HGF)POF4-315$$a315 - Bildgebung und Radioonkologie (POF4-315)$$cPOF4-315$$fPOF IV$$x0
000170437 588__ $$aDataset connected to CrossRef, PubMed, , Journals: inrepo01.inet.dkfz-heidelberg.de
000170437 650_7 $$2Other$$aIVIM
000170437 650_7 $$2Other$$adiffusion
000170437 650_7 $$2Other$$aecho time
000170437 650_7 $$2Other$$aliver
000170437 650_7 $$2Other$$aperfusion
000170437 7001_ $$00000-0002-6346-3526$$aRiexinger, Andreas Julian$$b1
000170437 7001_ $$aLoh, Martin$$b2
000170437 7001_ $$aMartin, Jan$$b3
000170437 7001_ $$aWetscherek, Andreas$$b4
000170437 7001_ $$0P:(DE-He78)59dfdd0ee0a7f0db81535f0781a3a6d6$$aKuder, Tristan Anselm$$b5$$udkfz
000170437 7001_ $$aUder, Michael$$b6
000170437 7001_ $$aHensel, Bernhard$$b7
000170437 7001_ $$aLaun, Frederik Bernd$$b8
000170437 773__ $$0PERI:(DE-600)1493786-4$$a10.1002/mrm.28996$$gp. mrm.28996$$n2$$p859-871$$tMagnetic resonance in medicine$$v87$$x1522-2594$$y2022
000170437 909CO $$ooai:inrepo02.dkfz.de:170437$$pVDB
000170437 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)59dfdd0ee0a7f0db81535f0781a3a6d6$$aDeutsches Krebsforschungszentrum$$b5$$kDKFZ
000170437 9131_ $$0G:(DE-HGF)POF4-315$$1G:(DE-HGF)POF4-310$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vBildgebung und Radioonkologie$$x0
000170437 9141_ $$y2021
000170437 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2021-01-27$$wger
000170437 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-27
000170437 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2021-01-27
000170437 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-27
000170437 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2022-11-08$$wger
000170437 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-08
000170437 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-08
000170437 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-08
000170437 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-08
000170437 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2022-11-08
000170437 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine$$d2022-11-08
000170437 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2022-11-08
000170437 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bMAGN RESON MED : 2021$$d2022-11-08
000170437 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2022-11-08
000170437 9201_ $$0I:(DE-He78)E020-20160331$$kE020$$lE020 Med. Physik in der Radiologie$$x0
000170437 980__ $$ajournal
000170437 980__ $$aVDB
000170437 980__ $$aI:(DE-He78)E020-20160331
000170437 980__ $$aUNRESTRICTED