001     170451
005     20240229133714.0
024 7 _ |a 10.3390/antiox10081195
|2 doi
024 7 _ |a pmid:34439443
|2 pmid
024 7 _ |a pmc:PMC8388983
|2 pmc
037 _ _ |a DKFZ-2021-01944
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Schöttker, Ben
|0 P:(DE-He78)c67a12496b8aac150c0eef888d808d46
|b 0
|e First author
|u dkfz
245 _ _ |a Associations of Human Colorectal Adenoma with Serum Biomarkers of Body Iron Stores, Inflammation and Antioxidant Protein Thiols.
260 _ _ |a Basel
|c 2021
|b MDPI
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1630484949_28103
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a #EA:C070#LA:C070#
520 _ _ |a Red and processed meat consumption and obesity are established risk factors for colorectal adenoma (CRA). Adverse changes in biomarkers of body iron stores (total serum iron, ferritin, transferrin and transferrin saturation), inflammation (high-sensitivity C-reactive protein [hs-CRP]) and anti-oxidative capacity (total of thiol groups (-S-H) of proteins [SHP]) might reflect underlying mechanisms that could explain the association of red/processed meat consumption and obesity with CRA. Overall, 100 CRA cases (including 71 advanced cases) and 100 CRA-free controls were frequency-matched on age and sex and were selected from a colonoscopy screening cohort. Odds ratios (OR) and 95% confidence intervals (95%CI) for comparisons of top and bottom biomarker tertiles were derived from multivariable logistic regression models. Ferritin levels were significantly positively associated with red/processed meat consumption and hs-CRP levels with obesity. SHP levels were significantly inversely associated with obesity. Transferrin saturation was strongly positively associated with overall and advanced CRA (ORs [95%CIs]: 3.05 [1.30-7.19] and 2.71 [1.03-7.13], respectively). Due to the high correlation with transferrin saturation, results for total serum iron concentration were similar (but not statistically significant). Furthermore, SHP concentration was significantly inversely associated with advanced CRA (OR [95%CI]: 0.29 [0.10-0.84]) but not with overall CRA (OR [95%CI]: 0.65 [0.27-1.56]). Ferritin, transferrin, and hs-CRP levels were not associated with CRA. High transferrin saturation as a sign of iron overload and a low SHP concentration as a sign of redox imbalance in obese patients might reflect underlying mechanisms that could in part explain the associations of iron overload and obesity with CRA.
536 _ _ |a 313 - Krebsrisikofaktoren und Prävention (POF4-313)
|0 G:(DE-HGF)POF4-313
|c POF4-313
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo01.inet.dkfz-heidelberg.de
650 _ 7 |a C-reactive protein
|2 Other
650 _ 7 |a colorectal adenoma
|2 Other
650 _ 7 |a ferritin
|2 Other
650 _ 7 |a iron
|2 Other
650 _ 7 |a thiols
|2 Other
650 _ 7 |a transferrin saturation
|2 Other
700 1 _ |a Gao, Xin
|0 P:(DE-He78)8218df9f6f41792399cd3a29b587e4e7
|b 1
|u dkfz
700 1 _ |a Jansen, Eugène Hjm
|0 0000-0002-3151-5897
|b 2
700 1 _ |a Brenner, Hermann
|0 P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2
|b 3
|e Last author
|u dkfz
773 _ _ |a 10.3390/antiox10081195
|g Vol. 10, no. 8, p. 1195 -
|0 PERI:(DE-600)2704216-9
|n 8
|p 1195
|t Antioxidants
|v 10
|y 2021
|x 2076-3921
909 C O |o oai:inrepo02.dkfz.de:170451
|p VDB
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 0
|6 P:(DE-He78)c67a12496b8aac150c0eef888d808d46
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 1
|6 P:(DE-He78)8218df9f6f41792399cd3a29b587e4e7
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 3
|6 P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-313
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Krebsrisikofaktoren und Prävention
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-08-31
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-08-31
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2020-08-31
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2020-08-31
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2020-08-31
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Blind peer review
|d 2020-08-31
915 _ _ |a Creative Commons Attribution CC BY (No Version)
|0 LIC:(DE-HGF)CCBYNV
|2 V:(DE-HGF)
|b DOAJ
|d 2020-08-31
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-08-31
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-08-31
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2020-08-31
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2020-08-31
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2020-08-31
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-08-31
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2020-08-31
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2020-08-31
920 1 _ |0 I:(DE-He78)C070-20160331
|k C070
|l C070 Klinische Epidemiologie und Alternf.
|x 0
920 1 _ |0 I:(DE-He78)C120-20160331
|k C120
|l Präventive Onkologie
|x 1
920 1 _ |0 I:(DE-He78)HD01-20160331
|k HD01
|l DKTK HD zentral
|x 2
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)C070-20160331
980 _ _ |a I:(DE-He78)C120-20160331
980 _ _ |a I:(DE-He78)HD01-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21