000172496 001__ 172496
000172496 005__ 20240229133720.0
000172496 0247_ $$2doi$$a10.1038/s41598-021-99103-4
000172496 0247_ $$2pmid$$apmid:34608230
000172496 0247_ $$2altmetric$$aaltmetric:115186840
000172496 037__ $$aDKFZ-2021-02060
000172496 041__ $$aEnglish
000172496 082__ $$a600
000172496 1001_ $$aSchiborn, Catarina$$b0
000172496 245__ $$aA newly developed and externally validated non-clinical score accurately predicts 10-year cardiovascular disease risk in the general adult population.
000172496 260__ $$a[London]$$bMacmillan Publishers Limited, part of Springer Nature$$c2021
000172496 3367_ $$2DRIVER$$aarticle
000172496 3367_ $$2DataCite$$aOutput Types/Journal article
000172496 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1633603428_3117
000172496 3367_ $$2BibTeX$$aARTICLE
000172496 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000172496 3367_ $$00$$2EndNote$$aJournal Article
000172496 520__ $$aInclusion of clinical parameters limits the application of most cardiovascular disease (CVD) prediction models to clinical settings. We developed and externally validated a non-clinical CVD risk score with a clinical extension and compared the performance to established CVD risk scores. We derived the scores predicting CVD (non-fatal and fatal myocardial infarction and stroke) in the European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam cohort (n = 25,992, cases = 683) using competing risk models and externally validated in EPIC-Heidelberg (n = 23,529, cases = 692). Performance was assessed by C-indices, calibration plots, and expected-to-observed ratios and compared to a non-clinical model, the Pooled Cohort Equation, Framingham CVD Risk Scores (FRS), PROCAM scores, and the Systematic Coronary Risk Evaluation (SCORE). Our non-clinical score included age, gender, waist circumference, smoking, hypertension, type 2 diabetes, CVD family history, and dietary parameters. C-indices consistently indicated good discrimination (EPIC-Potsdam 0.786, EPIC-Heidelberg 0.762) comparable to established clinical scores (thereof highest, FRS: EPIC-Potsdam 0.781, EPIC-Heidelberg 0.764). Additional clinical parameters slightly improved discrimination (EPIC-Potsdam 0.796, EPIC-Heidelberg 0.769). Calibration plots indicated very good calibration with minor overestimation in the highest decile of predicted risk. The developed non-clinical 10-year CVD risk score shows comparable discrimination to established clinical scores, allowing assessment of individual CVD risk in physician-independent settings.
000172496 536__ $$0G:(DE-HGF)POF4-313$$a313 - Krebsrisikofaktoren und Prävention (POF4-313)$$cPOF4-313$$fPOF IV$$x0
000172496 588__ $$aDataset connected to CrossRef, PubMed, , Journals: inrepo01.inet.dkfz-heidelberg.de
000172496 7001_ $$0P:(DE-He78)0907a10ba1dc8f53f04907f54f6fdcfe$$aKühn, Tilman$$b1$$udkfz
000172496 7001_ $$aMühlenbruch, Kristin$$b2
000172496 7001_ $$aKuxhaus, Olga$$b3
000172496 7001_ $$aWeikert, Cornelia$$b4
000172496 7001_ $$aFritsche, Andreas$$b5
000172496 7001_ $$0P:(DE-He78)4b2dc91c9d1ac33a1c0e0777d0c1697a$$aKaaks, Rudolf$$b6$$udkfz
000172496 7001_ $$aSchulze, Matthias B$$b7
000172496 773__ $$0PERI:(DE-600)2615211-3$$a10.1038/s41598-021-99103-4$$gVol. 11, no. 1, p. 19609$$n1$$p19609$$tScientific reports$$v11$$x2045-2322$$y2021
000172496 909CO $$ooai:inrepo02.dkfz.de:172496$$pVDB
000172496 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)0907a10ba1dc8f53f04907f54f6fdcfe$$aDeutsches Krebsforschungszentrum$$b1$$kDKFZ
000172496 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)4b2dc91c9d1ac33a1c0e0777d0c1697a$$aDeutsches Krebsforschungszentrum$$b6$$kDKFZ
000172496 9131_ $$0G:(DE-HGF)POF4-313$$1G:(DE-HGF)POF4-310$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vKrebsrisikofaktoren und Prävention$$x0
000172496 9141_ $$y2021
000172496 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSCI REP-UK : 2019$$d2021-02-03
000172496 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-02-03
000172496 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-02-03
000172496 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2021-02-03
000172496 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2021-02-03
000172496 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2021-02-03
000172496 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review$$d2021-02-03
000172496 915__ $$0LIC:(DE-HGF)CCBYNV$$2V:(DE-HGF)$$aCreative Commons Attribution CC BY (No Version)$$bDOAJ$$d2021-02-03
000172496 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-02-03
000172496 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-02-03
000172496 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-02-03
000172496 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-03
000172496 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2021-02-03
000172496 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-02-03
000172496 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record$$d2021-02-03
000172496 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2021-02-03
000172496 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-03
000172496 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-02-03
000172496 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-02-03
000172496 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2021-02-03
000172496 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2021-02-03
000172496 9201_ $$0I:(DE-He78)C020-20160331$$kC020$$lC020 Epidemiologie von Krebs$$x0
000172496 980__ $$ajournal
000172496 980__ $$aVDB
000172496 980__ $$aI:(DE-He78)C020-20160331
000172496 980__ $$aUNRESTRICTED