001     176970
005     20240229133727.0
024 7 _ |a 10.1093/ndt/gfab294
|2 doi
024 7 _ |a pmid:34612501
|2 pmid
024 7 _ |a 0931-0509
|2 ISSN
024 7 _ |a 1460-2385
|2 ISSN
024 7 _ |a altmetric:114625397
|2 altmetric
037 _ _ |a DKFZ-2021-02203
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Nano, Jana
|b 0
245 _ _ |a Novel biomarkers of inflammation, kidney function and chronic kidney disease in the general population.
260 _ _ |a Oxford
|c 2022
|b Oxford Univ. Press
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1665053810_20165
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a 2022 Sep 22;37(10):1916-1926
520 _ _ |a Inflammatory processes have been implicated in the development of chronic kidney disease (CKD). We investigated the association of a large panel of inflammatory biomarkers reflecting aspects of immunity with kidney function and CKD incidence.We used data from two independent population-based studies, KORA F4 (discovery, n = 1,110, mean age 70.3 years, 48.7% male) and ESTHER (replication, n = 1,672, mean age 61.9 years, 43.6% male). Serum levels of biomarkers were measured using proximity extension assay technology. The association of biomarkers with estimated glomerular filtration rate (eGFR) at baseline and with incident CKD was investigated using linear and logistic regression models adjusted for cardiorenal risk factors. Independent results from prospective analyses of both studies were pooled. The significance level was corrected for multiple testing by false-discovery rate (PFDR < 0.05.).In the KORA F4 discovery study, 52 out of 71 inflammatory biomarkers were inversely associated with eGFR estimated based on serum creatinine. Top biomarkers included CD40, TNFRSF9 and IL10RB. Forty-two of these 52 biomarkers were replicated in the ESTHER study. Nine of the 42 biomarkers were associated with incident CKD independently of cardiorenal risk factors in the meta-analysis of the KORA (n = 142, mean follow-up of 6.5 years) and ESTHER (n = 103, mean follow-up of 8 years) studies. Pathway analysis revealed the involvement of inflammatory and immunomodulatory processes reflecting cross-communication of innate and adaptive immune cells.Novel and known biomarkers of inflammation were reproducibly associated with kidney function. Future studies should investigate their clinical utility and underlying molecular mechanisms in independent cohorts.
536 _ _ |a 313 - Krebsrisikofaktoren und Prävention (POF4-313)
|0 G:(DE-HGF)POF4-313
|c POF4-313
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo01.inet.dkfz-heidelberg.de
650 _ 7 |a chronic kidney disease
|2 Other
650 _ 7 |a glomerular filtration rate
|2 Other
650 _ 7 |a inflammation
|2 Other
650 _ 7 |a population cohort
|2 Other
650 _ 7 |a proteomics
|2 Other
700 1 _ |a Schöttker, Ben
|0 P:(DE-He78)c67a12496b8aac150c0eef888d808d46
|b 1
|u dkfz
700 1 _ |a Lin, Jie-Sheng
|b 2
700 1 _ |a Huth, Cornelia
|0 0000-0003-2421-433X
|b 3
700 1 _ |a Ghanbari, Mohsen
|b 4
700 1 _ |a Garcia, Pamela Matias
|b 5
700 1 _ |a Maalmi, Haifa
|b 6
700 1 _ |a Karrasch, Stefan
|b 7
700 1 _ |a Koenig, Wolfgang
|0 0000-0002-2064-9603
|b 8
700 1 _ |a Rothenbacher, Dietrich
|0 0000-0002-3563-2791
|b 9
700 1 _ |a Roden, Michael
|b 10
700 1 _ |a Meisinger, Christa
|0 0000-0002-9026-6544
|b 11
700 1 _ |a Peters, Annette
|0 0000-0001-6645-0985
|b 12
700 1 _ |a Brenner, Hermann
|0 P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2
|b 13
|u dkfz
700 1 _ |a Herder, Christian
|0 0000-0002-2050-093X
|b 14
700 1 _ |a Thorand, Barbara
|0 0000-0002-8416-6440
|b 15
773 _ _ |a 10.1093/ndt/gfab294
|g p. gfab294
|0 PERI:(DE-600)1465709-0
|n 10
|p 1916-1926
|t Nephrology, dialysis, transplantation
|v 37
|y 2022
|x 1460-2385
909 C O |p VDB
|o oai:inrepo02.dkfz.de:176970
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 1
|6 P:(DE-He78)c67a12496b8aac150c0eef888d808d46
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 9
|6 0000-0002-3563-2791
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 13
|6 P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-313
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Krebsrisikofaktoren und Prävention
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-02-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2021-02-04
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-02-04
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2022-11-16
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2022-11-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
|d 2022-11-16
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NEPHROL DIAL TRANSPL : 2021
|d 2022-11-16
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2022-11-16
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2022-11-16
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b NEPHROL DIAL TRANSPL : 2021
|d 2022-11-16
920 1 _ |0 I:(DE-He78)C070-20160331
|k C070
|l C070 Klinische Epidemiologie und Alternf.
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)C070-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21