000176996 001__ 176996
000176996 005__ 20240229133728.0
000176996 0247_ $$2doi$$a10.1016/j.radonc.2021.09.035
000176996 0247_ $$2pmid$$apmid:34634380
000176996 0247_ $$2ISSN$$a0167-8140
000176996 0247_ $$2ISSN$$a1879-0887
000176996 0247_ $$2altmetric$$aaltmetric:114786317
000176996 037__ $$aDKFZ-2021-02229
000176996 041__ $$aEnglish
000176996 082__ $$a610
000176996 1001_ $$0P:(DE-He78)5856cf71bc744bfc1b0b4af25119c2ff$$aBendinger, Alina$$b0$$eFirst author$$udkfz
000176996 245__ $$aDCE-MRI detected vascular permeability changes in the rat spinal cord do not explain shorter latency times for paresis after carbon ions relative to photons.
000176996 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2021
000176996 3367_ $$2DRIVER$$aarticle
000176996 3367_ $$2DataCite$$aOutput Types/Journal article
000176996 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1636624245_5416
000176996 3367_ $$2BibTeX$$aARTICLE
000176996 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000176996 3367_ $$00$$2EndNote$$aJournal Article
000176996 500__ $$a#EA:E040#LA:E040# / Volume 165, December 2021, Pages 126-134
000176996 520__ $$aRadiation-induced myelopathy, an irreversible complication occurring after a long symptom-free latency time, is preceded by a fixed sequence of magnetic resonance- (MR-) visible morphological alterations. Vascular degradation is assumed the main reason for radiation-induced myelopathy. We used dynamic contrast-enhanced (DCE-) MRI to identify different vascular changes after photon and carbon ion irradiation, which precede or coincide with morphological changes.The cervical spinal cord of rats was irradiated with iso-effective photon or carbon (12C-)ion doses. Afterwards, animals underwent frequent DCE-MR imaging until they developed symptomatic radiation-induced myelopathy (paresis II). Measurements were performed at certain time points: 1 month, 2 months, 3 months, 4 months, and 6 months after irradiation, and when animals showed morphological (such as edema/ syrinx/ contrast agent (CA) accumulation) or neurological alterations (such as, paresis I, and paresis II). DCE-MRI data was analyzed using the extended Toft's model.Fit quality improved with gradual disintegration of the blood spinal cord barrier (BSCB) towards paresis II. Vascular permeability increased three months after photon irradiation, and rapidly escalated after animals showed MR-visible morphological changes until paresis II. After 12C-ion irradiation, vascular permeability increased when animals showed morphological alterations and increased further until animals had paresis II. The volume transfer constant and the plasma volume showed no significant changes.Only after photon irradiation, DCE-MRI provides a temporal advantage in detecting early physiological signs in radiation-induced myelopathy compared to morphological MRI. As a generally lower level of vascular permeability after 12C-ions led to an earlier development of paresis as compared to photons, we conclude that other mechanisms dominate the development of paresis II.
000176996 536__ $$0G:(DE-HGF)POF4-315$$a315 - Bildgebung und Radioonkologie (POF4-315)$$cPOF4-315$$fPOF IV$$x0
000176996 588__ $$aDataset connected to CrossRef, PubMed, , Journals: inrepo01.inet.dkfz-heidelberg.de
000176996 650_7 $$2Other$$a(12)C-ion irradiation
000176996 650_7 $$2Other$$acervical spinal cord
000176996 650_7 $$2Other$$adynamic contrast-enhanced magnetic resonance imaging
000176996 650_7 $$2Other$$alate radiation effects
000176996 650_7 $$2Other$$amyelopathy
000176996 7001_ $$0P:(DE-He78)918b1b98bbffbb4556c51eb3c26d7d92$$aWelzel, Thomas$$b1$$udkfz
000176996 7001_ $$0P:(DE-He78)928d4161304d0155b9c13bca33e1c68d$$aHuang, Lifi$$b2$$udkfz
000176996 7001_ $$0P:(DE-He78)4bbdf2b0146dc184caf29eb84330807f$$aBabushkina, Inna$$b3$$udkfz
000176996 7001_ $$0P:(DE-He78)1bf5666dbe17c0fd5e81301c52f6347a$$aPeschke, Peter$$b4
000176996 7001_ $$0P:(DE-He78)8714da4e45acfa36ce87c291443a9218$$aDebus, Jürgen$$b5$$udkfz
000176996 7001_ $$0P:(DE-He78)06ec1253cfc102aebeeb536a65133370$$aGlowa, Christin$$b6$$udkfz
000176996 7001_ $$0P:(DE-He78)b43076fb0a30230e4323887c0c980046$$aKarger, Christian P$$b7$$udkfz
000176996 7001_ $$0P:(DE-He78)132c557ecfe3de184432e5ac8a9c7308$$aSaager, Maria$$b8$$eLast author
000176996 773__ $$0PERI:(DE-600)1500707-8$$a10.1016/j.radonc.2021.09.035$$gp. S0167814021087569$$p126-134$$tRadiotherapy and oncology$$v165$$x0167-8140$$y2021
000176996 909CO $$ooai:inrepo02.dkfz.de:176996$$pVDB
000176996 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)5856cf71bc744bfc1b0b4af25119c2ff$$aDeutsches Krebsforschungszentrum$$b0$$kDKFZ
000176996 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)918b1b98bbffbb4556c51eb3c26d7d92$$aDeutsches Krebsforschungszentrum$$b1$$kDKFZ
000176996 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)928d4161304d0155b9c13bca33e1c68d$$aDeutsches Krebsforschungszentrum$$b2$$kDKFZ
000176996 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)4bbdf2b0146dc184caf29eb84330807f$$aDeutsches Krebsforschungszentrum$$b3$$kDKFZ
000176996 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)1bf5666dbe17c0fd5e81301c52f6347a$$aDeutsches Krebsforschungszentrum$$b4$$kDKFZ
000176996 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)8714da4e45acfa36ce87c291443a9218$$aDeutsches Krebsforschungszentrum$$b5$$kDKFZ
000176996 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)06ec1253cfc102aebeeb536a65133370$$aDeutsches Krebsforschungszentrum$$b6$$kDKFZ
000176996 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)b43076fb0a30230e4323887c0c980046$$aDeutsches Krebsforschungszentrum$$b7$$kDKFZ
000176996 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)132c557ecfe3de184432e5ac8a9c7308$$aDeutsches Krebsforschungszentrum$$b8$$kDKFZ
000176996 9131_ $$0G:(DE-HGF)POF4-315$$1G:(DE-HGF)POF4-310$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vBildgebung und Radioonkologie$$x0
000176996 9141_ $$y2021
000176996 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2021-01-31$$wger
000176996 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-31
000176996 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-31
000176996 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-31
000176996 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-31
000176996 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2021-01-31
000176996 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine$$d2021-01-31
000176996 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2021-01-31
000176996 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-31
000176996 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-31
000176996 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bRADIOTHER ONCOL : 2019$$d2021-01-31
000176996 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-01-31
000176996 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-01-31
000176996 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-01-31
000176996 9201_ $$0I:(DE-He78)E040-20160331$$kE040$$lE040 Med. Physik in der Strahlentherapie$$x0
000176996 9201_ $$0I:(DE-He78)W240-20160331$$kW240$$lW240 Kleintierbildgebung$$x1
000176996 9201_ $$0I:(DE-He78)E050-20160331$$kE050$$lE050 KKE Strahlentherapie$$x2
000176996 980__ $$ajournal
000176996 980__ $$aVDB
000176996 980__ $$aI:(DE-He78)E040-20160331
000176996 980__ $$aI:(DE-He78)W240-20160331
000176996 980__ $$aI:(DE-He78)E050-20160331
000176996 980__ $$aUNRESTRICTED