001     176996
005     20240229133728.0
024 7 _ |a 10.1016/j.radonc.2021.09.035
|2 doi
024 7 _ |a pmid:34634380
|2 pmid
024 7 _ |a 0167-8140
|2 ISSN
024 7 _ |a 1879-0887
|2 ISSN
024 7 _ |a altmetric:114786317
|2 altmetric
037 _ _ |a DKFZ-2021-02229
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Bendinger, Alina
|0 P:(DE-He78)5856cf71bc744bfc1b0b4af25119c2ff
|b 0
|e First author
|u dkfz
245 _ _ |a DCE-MRI detected vascular permeability changes in the rat spinal cord do not explain shorter latency times for paresis after carbon ions relative to photons.
260 _ _ |a Amsterdam [u.a.]
|c 2021
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1636624245_5416
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a #EA:E040#LA:E040# / Volume 165, December 2021, Pages 126-134
520 _ _ |a Radiation-induced myelopathy, an irreversible complication occurring after a long symptom-free latency time, is preceded by a fixed sequence of magnetic resonance- (MR-) visible morphological alterations. Vascular degradation is assumed the main reason for radiation-induced myelopathy. We used dynamic contrast-enhanced (DCE-) MRI to identify different vascular changes after photon and carbon ion irradiation, which precede or coincide with morphological changes.The cervical spinal cord of rats was irradiated with iso-effective photon or carbon (12C-)ion doses. Afterwards, animals underwent frequent DCE-MR imaging until they developed symptomatic radiation-induced myelopathy (paresis II). Measurements were performed at certain time points: 1 month, 2 months, 3 months, 4 months, and 6 months after irradiation, and when animals showed morphological (such as edema/ syrinx/ contrast agent (CA) accumulation) or neurological alterations (such as, paresis I, and paresis II). DCE-MRI data was analyzed using the extended Toft's model.Fit quality improved with gradual disintegration of the blood spinal cord barrier (BSCB) towards paresis II. Vascular permeability increased three months after photon irradiation, and rapidly escalated after animals showed MR-visible morphological changes until paresis II. After 12C-ion irradiation, vascular permeability increased when animals showed morphological alterations and increased further until animals had paresis II. The volume transfer constant and the plasma volume showed no significant changes.Only after photon irradiation, DCE-MRI provides a temporal advantage in detecting early physiological signs in radiation-induced myelopathy compared to morphological MRI. As a generally lower level of vascular permeability after 12C-ions led to an earlier development of paresis as compared to photons, we conclude that other mechanisms dominate the development of paresis II.
536 _ _ |a 315 - Bildgebung und Radioonkologie (POF4-315)
|0 G:(DE-HGF)POF4-315
|c POF4-315
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo01.inet.dkfz-heidelberg.de
650 _ 7 |a (12)C-ion irradiation
|2 Other
650 _ 7 |a cervical spinal cord
|2 Other
650 _ 7 |a dynamic contrast-enhanced magnetic resonance imaging
|2 Other
650 _ 7 |a late radiation effects
|2 Other
650 _ 7 |a myelopathy
|2 Other
700 1 _ |a Welzel, Thomas
|0 P:(DE-He78)918b1b98bbffbb4556c51eb3c26d7d92
|b 1
|u dkfz
700 1 _ |a Huang, Lifi
|0 P:(DE-He78)928d4161304d0155b9c13bca33e1c68d
|b 2
|u dkfz
700 1 _ |a Babushkina, Inna
|0 P:(DE-He78)4bbdf2b0146dc184caf29eb84330807f
|b 3
|u dkfz
700 1 _ |a Peschke, Peter
|0 P:(DE-He78)1bf5666dbe17c0fd5e81301c52f6347a
|b 4
700 1 _ |a Debus, Jürgen
|0 P:(DE-He78)8714da4e45acfa36ce87c291443a9218
|b 5
|u dkfz
700 1 _ |a Glowa, Christin
|0 P:(DE-He78)06ec1253cfc102aebeeb536a65133370
|b 6
|u dkfz
700 1 _ |a Karger, Christian P
|0 P:(DE-He78)b43076fb0a30230e4323887c0c980046
|b 7
|u dkfz
700 1 _ |a Saager, Maria
|0 P:(DE-He78)132c557ecfe3de184432e5ac8a9c7308
|b 8
|e Last author
773 _ _ |a 10.1016/j.radonc.2021.09.035
|g p. S0167814021087569
|0 PERI:(DE-600)1500707-8
|p 126-134
|t Radiotherapy and oncology
|v 165
|y 2021
|x 0167-8140
909 C O |p VDB
|o oai:inrepo02.dkfz.de:176996
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 0
|6 P:(DE-He78)5856cf71bc744bfc1b0b4af25119c2ff
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 1
|6 P:(DE-He78)918b1b98bbffbb4556c51eb3c26d7d92
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 2
|6 P:(DE-He78)928d4161304d0155b9c13bca33e1c68d
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 3
|6 P:(DE-He78)4bbdf2b0146dc184caf29eb84330807f
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 4
|6 P:(DE-He78)1bf5666dbe17c0fd5e81301c52f6347a
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 5
|6 P:(DE-He78)8714da4e45acfa36ce87c291443a9218
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 6
|6 P:(DE-He78)06ec1253cfc102aebeeb536a65133370
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 7
|6 P:(DE-He78)b43076fb0a30230e4323887c0c980046
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 8
|6 P:(DE-He78)132c557ecfe3de184432e5ac8a9c7308
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-315
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Bildgebung und Radioonkologie
|x 0
914 1 _ |y 2021
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2021-01-31
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-01-31
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-01-31
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-01-31
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-31
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2021-01-31
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
|d 2021-01-31
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2021-01-31
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-31
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-01-31
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b RADIOTHER ONCOL : 2019
|d 2021-01-31
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2021-01-31
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2021-01-31
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2021-01-31
920 1 _ |0 I:(DE-He78)E040-20160331
|k E040
|l E040 Med. Physik in der Strahlentherapie
|x 0
920 1 _ |0 I:(DE-He78)W240-20160331
|k W240
|l W240 Kleintierbildgebung
|x 1
920 1 _ |0 I:(DE-He78)E050-20160331
|k E050
|l E050 KKE Strahlentherapie
|x 2
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)E040-20160331
980 _ _ |a I:(DE-He78)W240-20160331
980 _ _ |a I:(DE-He78)E050-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21