001     177033
005     20240229133729.0
024 7 _ |a 10.1016/j.ejca.2021.08.039
|2 doi
024 7 _ |a pmid:34649117
|2 pmid
024 7 _ |a 0014-2964
|2 ISSN
024 7 _ |a 0959-8049
|2 ISSN
024 7 _ |a 1879-0852
|2 ISSN
024 7 _ |a (1990)
|2 ISSN
024 7 _ |a 1879-2995
|2 ISSN
024 7 _ |a (1965)
|2 ISSN
024 7 _ |a altmetric:115233635
|2 altmetric
037 _ _ |a DKFZ-2021-02261
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Kiehl, Lennard
|0 P:(DE-He78)29466f5cfe110ed866c860a358a88825
|b 0
|e First author
245 _ _ |a Deep learning can predict lymph node status directly from histology in colorectal cancer.
260 _ _ |a Amsterdam [u.a.]
|c 2021
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1639480770_12182
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a #EA:C140#LA:C140#
520 _ _ |a Lymph node status is a prognostic marker and strongly influences therapeutic decisions in colorectal cancer (CRC).The objective of the study is to investigate whether image features extracted by a deep learning model from routine histological slides and/or clinical data can be used to predict CRC lymph node metastasis (LNM).Using histological whole slide images (WSIs) of primary tumours of 2431 patients in the DACHS cohort, we trained a convolutional neural network to predict LNM. In parallel, we used clinical data derived from the same cases in logistic regression analyses. Subsequently, the slide-based artificial intelligence predictor (SBAIP) score was included in the regression. WSIs and data from 582 patients of the TCGA cohort were used as the external test set.On the internal test set, the SBAIP achieved an area under receiver operating characteristic (AUROC) of 71.0%, the clinical classifier achieved an AUROC of 67.0% and a combination of the two classifiers yielded an improvement to 74.1%. Whereas the clinical classifier's performance remained stable on the TCGA set, performance of the SBAIP dropped to an AUROC of 61.2%. Performance of the clinical classifier depended strongly on the T stage.Deep learning-based image analysis may help predict LNM of patients with CRC using routine histological slides. Combination with clinical data such as T stage might be useful. Strategies to increase performance of the SBAIP on external images should be investigated.
536 _ _ |a 313 - Krebsrisikofaktoren und Prävention (POF4-313)
|0 G:(DE-HGF)POF4-313
|c POF4-313
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo01.inet.dkfz-heidelberg.de
650 _ 7 |a CNN
|2 Other
650 _ 7 |a Clinical data
|2 Other
650 _ 7 |a Colorectal cancer
|2 Other
650 _ 7 |a Deep learning
|2 Other
650 _ 7 |a Lymph node status
|2 Other
700 1 _ |a Kuntz, Sara
|0 P:(DE-He78)52f31629a970c50c559f08fddd957a3b
|b 1
700 1 _ |a Höhn, Julia
|0 P:(DE-He78)551f38237e85bb25b4502ba8fbb88f4f
|b 2
700 1 _ |a Jutzi, Tanja
|0 P:(DE-He78)23fc125c7c54492d146e72389bab5208
|b 3
700 1 _ |a Krieghoff-Henning, Eva
|0 P:(DE-He78)8e2078af783ff2be822e7799c43bc86a
|b 4
700 1 _ |a Kather, Jakob N
|b 5
700 1 _ |a Holland-Letz, Tim
|0 P:(DE-He78)457c042884c901eb0a02c18bb1d30103
|b 6
700 1 _ |a Kopp-Schneider, Annette
|0 P:(DE-He78)bb6a7a70f976eb8df1769944bf913596
|b 7
700 1 _ |a Chang-Claude, Jenny
|0 P:(DE-He78)c259d6cc99edf5c7bc7ce22c7f87c253
|b 8
700 1 _ |a Brobeil, Alexander
|b 9
700 1 _ |a von Kalle, Christof
|b 10
700 1 _ |a Fröhling, Stefan
|0 P:(DE-He78)f0144d171d26dbedb67c9db1df35629d
|b 11
|u dkfz
700 1 _ |a Alwers, Elizabeth
|0 P:(DE-He78)9b2a61b2abe4a64ca23b6783b7c4fe63
|b 12
700 1 _ |a Brenner, Hermann
|0 P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2
|b 13
700 1 _ |a Hoffmeister, Michael
|0 P:(DE-He78)6c5d058b7552d071a7fa4c5e943fff0f
|b 14
700 1 _ |a Brinker, Titus
|0 P:(DE-He78)1e33961c8780aca9b76d776d1fdc1ebb
|b 15
|e Last author
773 _ _ |a 10.1016/j.ejca.2021.08.039
|g Vol. 157, p. 464 - 473
|0 PERI:(DE-600)1468190-0
|p 464 - 473
|t European journal of cancer
|v 157
|y 2021
|x 0959-8049
909 C O |p VDB
|o oai:inrepo02.dkfz.de:177033
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 0
|6 P:(DE-He78)29466f5cfe110ed866c860a358a88825
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 1
|6 P:(DE-He78)52f31629a970c50c559f08fddd957a3b
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 2
|6 P:(DE-He78)551f38237e85bb25b4502ba8fbb88f4f
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 3
|6 P:(DE-He78)23fc125c7c54492d146e72389bab5208
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 4
|6 P:(DE-He78)8e2078af783ff2be822e7799c43bc86a
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 6
|6 P:(DE-He78)457c042884c901eb0a02c18bb1d30103
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 7
|6 P:(DE-He78)bb6a7a70f976eb8df1769944bf913596
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 8
|6 P:(DE-He78)c259d6cc99edf5c7bc7ce22c7f87c253
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 11
|6 P:(DE-He78)f0144d171d26dbedb67c9db1df35629d
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 12
|6 P:(DE-He78)9b2a61b2abe4a64ca23b6783b7c4fe63
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 13
|6 P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 14
|6 P:(DE-He78)6c5d058b7552d071a7fa4c5e943fff0f
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 15
|6 P:(DE-He78)1e33961c8780aca9b76d776d1fdc1ebb
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-313
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Krebsrisikofaktoren und Prävention
|x 0
914 1 _ |y 2021
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2021-01-28
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2021-01-28
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-01-28
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b EUR J CANCER : 2019
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2021-01-28
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2021-01-28
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b EUR J CANCER : 2019
|d 2021-01-28
920 1 _ |0 I:(DE-He78)C140-20160331
|k C140
|l NWG Digitale Biomarker in der Onkologie
|x 0
920 1 _ |0 I:(DE-He78)C060-20160331
|k C060
|l C060 Biostatistik
|x 1
920 1 _ |0 I:(DE-He78)C020-20160331
|k C020
|l C020 Epidemiologie von Krebs
|x 2
920 1 _ |0 I:(DE-He78)C070-20160331
|k C070
|l C070 Klinische Epidemiologie und Alternf.
|x 3
920 1 _ |0 I:(DE-He78)C120-20160331
|k C120
|l Präventive Onkologie
|x 4
920 1 _ |0 I:(DE-He78)B340-20160331
|k B340
|l Translationale Medizinische Onkologie
|x 5
920 1 _ |0 I:(DE-He78)HD01-20160331
|k HD01
|l DKTK HD zentral
|x 6
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)C140-20160331
980 _ _ |a I:(DE-He78)C060-20160331
980 _ _ |a I:(DE-He78)C020-20160331
980 _ _ |a I:(DE-He78)C070-20160331
980 _ _ |a I:(DE-He78)C120-20160331
980 _ _ |a I:(DE-He78)B340-20160331
980 _ _ |a I:(DE-He78)HD01-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21