001     177188
005     20240229133732.0
024 7 _ |a 10.1016/j.biosystems.2021.104564
|2 doi
024 7 _ |a pmid:34688841
|2 pmid
024 7 _ |a 0303-2647
|2 ISSN
024 7 _ |a 1872-8324
|2 ISSN
037 _ _ |a DKFZ-2021-02322
041 _ _ |a English
082 _ _ |a 570
100 1 _ |a Tares, Kira
|0 P:(DE-HGF)0
|b 0
|e First author
245 _ _ |a The canonical and non-canonical NF-κB pathways and their crosstalk: A comparative study based on Petri nets.
260 _ _ |a Amsterdam [u.a.]
|c 2022
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1642495284_14352
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a #EA:C070# / 2022 Jan;211:104564
520 _ _ |a NF-κB is a protein complex that occurs in almost all animal cell types. It regulates the cellular immune responses to stimuli in the nucleus. Dysregulation of NF-κB can cause severe diseases like chronic inflammation, autoimmune diseases or cancer. We modeled the two major pathways leading from the external cellular stimulation of the CD40 receptor to the nuclear translocation of NF-κB dimers, the canonical and non-canonical pathway. Based on literature data, we developed two Petri net models describing these pathways. In a third Petri net, we combined the two models, introducing crosstalk specific in CD40L-stimulated B cells. In terms of structural properties, we checked the Petri nets for their consistency and correctness. To explore differences and similarities, we compared structural properties and the simulation behavior of the models. The non-canonical NF-κB pathway exhibited a more diverse regulation than the canonical pathway. Applying in silico knockout analyses, we were able to quantify the relevance of individual biochemical processes. We predicted interrelationships, e.g., between the synthesis of the protein NF-κB-inducing kinase and the processing of the precursor protein p100. The activation of the transcription factors, p50-RelA and p52-RelB, was affected by most of the knockouts. The results of the in silico knockout were in accordance with experimental studies. The Petri net models provide a basis for further analyses and could be extended to include gene expression, additional pathways, molecular processes, and kinetic data.
536 _ _ |a 313 - Krebsrisikofaktoren und Prävention (POF4-313)
|0 G:(DE-HGF)POF4-313
|c POF4-313
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo01.inet.dkfz-heidelberg.de
650 _ 7 |a Canonical
|2 Other
650 _ 7 |a Insilico knockout matrix
|2 Other
650 _ 7 |a Invariants
|2 Other
650 _ 7 |a Manatee invariants
|2 Other
650 _ 7 |a NF-kB pathway
|2 Other
650 _ 7 |a Non-canonical
|2 Other
650 _ 7 |a Petri nets
|2 Other
700 1 _ |a Ackermann, J Org
|b 1
700 1 _ |a Koch, Ina
|b 2
773 _ _ |a 10.1016/j.biosystems.2021.104564
|g p. 104564 -
|0 PERI:(DE-600)1496359-0
|p 104564
|t Biosystems
|v 211
|y 2022
|x 0303-2647
909 C O |p VDB
|o oai:inrepo02.dkfz.de:177188
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 0
|6 P:(DE-HGF)0
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-313
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Krebsrisikofaktoren und Prävention
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2021-01-28
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-28
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2022-11-22
|w ger
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b BIOSYSTEMS : 2021
|d 2022-11-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2022-11-22
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2022-11-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2022-11-22
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
|d 2022-11-22
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2022-11-22
920 1 _ |0 I:(DE-He78)C070-20160331
|k C070
|l C070 Klinische Epidemiologie und Alternf.
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)C070-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21