001     177233
005     20240229133734.0
024 7 _ |a 10.1016/j.ijrobp.2021.07.160
|2 doi
024 7 _ |a pmid:34700599
|2 pmid
024 7 _ |a 0360-3016
|2 ISSN
024 7 _ |a 1879-355X
|2 ISSN
024 7 _ |a altmetric:115847982
|2 altmetric
037 _ _ |a DKFZ-2021-02367
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Nicolay, Nils
|0 P:(DE-He78)8d52e7ff1ccaac7dbf0232fdcb0168bd
|b 0
|e First author
|u dkfz
245 _ _ |a Development of a Hypoxia-Immune Prognostic Classifier for Head-and-Neck Cancer Patients Undergoing Radiotherapy - Results From a Prospective Imaging Trial.
260 _ _ |a Amsterdam [u.a.]
|c 2021
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1675085389_23510
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a #EA:E050#
520 _ _ |a Tumor-infiltrating lymphocytes (TILs) correlate with an improved outcome of head-and-neck squamous cell cancer (HNSCC) patients undergoing radiotherapy and are influenced by the tumor microenvironment and tumor-associated hypoxia. The present analysis is based on a prospective imaging trial and analyzes the value of TILs and tumor-associated hypoxia to stratify HNSCC patients according to their response to radiotherapy.A total of 49 patients with locoregionally advanced HNSCCs were prospectively enrolled in this trial and underwent longitudinal hypoxia PET imaging using fluoro-18 misonidazole ([18F]FMISO) in weeks 0, 2 and 5 during chemoradiation. Tumor hypoxia was assumed for a tumor-to-background SUV (contralateral sternocleidomastoid muscle) exceeding 1.4, and an early hypoxia response was defined as a decrease in the normalized maximum intratumoral SUV (FMISO-SUVindex) between weeks 0 and 2. Pre-treatment tumor biopsies were analyzed for TILs and the hypoxia tissue marker carbonic anhydrase IX (CAIX). Trial patients were stratified into 4 subgroups based on their TIL numbers (> 100 vs. < 100 TILs/HPF) and expression of CAIX (above vs. below median H-score), and locoregional control (LRC) and progression-free survival (PFS) rates for all subgroups were assessed using Cox and subsequent concordance analyses (Harrell's C).High TIL levels correlated with improved LRC (HR = 0.279, P = 0.011) and PFS (HR = 0.276, P = 0.006). Similarly, a decrease in the FMISO-SUVindex within the first 2 weeks of treatment corresponded with better LRC (HR = 0.321, P = 0.015) and PFS (HR = 0.402, P = 0.043). Harrell's C was 0.68, when TILs and early hypoxia PET response were combined. The hypoxia PET-based hypoxia-immune classifier separated 3 distinct prognostic patient subgroups, a favorable (TILhigh/ early PET response), and intermediate (TILhigh/no early PET response or TILlow/early PET response) and a poor (TILlow/no early PET response) prognostic group with 2-year LRC of 71%, 33% and 0%, respectively. Low pre-treatment tissue levels of CAIX were also prognostic for improved LRC (HR = 0.352, P = 0.050) but not PFS (HR = 0,468, P = 0,087). Harrell's C was 0.66 for CAIX and TILs separately and 0.71 for the combination. The immunohistochemistry-based immune-hypoxia classifier similarly stratified between a favorable (CAIXlow/TILhigh), an intermediate (CAIXlow/TILlow or CAIXhigh/TILhigh) and a poor (CAIXhigh/TILlow) subgroup with 2-year LRC rates of 73%, 62% and 11%, respectively.We developed a hypoxia PET-based hypoxia-immune classifier that was able to separate HNSCC patients into 3 distinct prognostic subgroups based on their tumor biology. These subgroups could also be stratified in a clinically feasible, immunohistochemistry-based classifier with comparable model accuracy. Therefore, this hypoxia-immune classifier could help to stratify prognoses of HNSCC patients undergoing radiotherapy pending validation in an external cohort.
536 _ _ |a 315 - Bildgebung und Radioonkologie (POF4-315)
|0 G:(DE-HGF)POF4-315
|c POF4-315
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo01.inet.dkfz-heidelberg.de
700 1 _ |a Rühle, A.
|0 P:(DE-He78)80e100a16534f5fc67f7436ee67a47f9
|b 1
|u dkfz
700 1 _ |a Mix, M.
|b 2
700 1 _ |a Wiedenmann, N.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Stoian, R. G.
|0 P:(DE-He78)75b4c256a6de824414938cf2aaeff88e
|b 4
|u dkfz
700 1 _ |a Niedermann, G.
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Baltas, D.
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Werner, M.
|0 P:(DE-He78)ad0ed5484fb008b6597171a8a348b26f
|b 7
|u dkfz
700 1 _ |a Ruf, Benjamin
|0 P:(DE-He78)b4d6f1a97e32c14ff3857fd0c8eda6be
|b 8
700 1 _ |a Kayser, G.
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Grosu, A.
|0 P:(DE-HGF)0
|b 10
773 _ _ |a 10.1016/j.ijrobp.2021.07.160
|g Vol. 111, no. 3S, p. S63 - S64
|0 PERI:(DE-600)1500486-7
|n 3S
|p S63 - S64
|t International journal of radiation oncology, biology, physics
|v 111
|y 2021
|x 0360-3016
909 C O |p VDB
|o oai:inrepo02.dkfz.de:177233
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 0
|6 P:(DE-He78)8d52e7ff1ccaac7dbf0232fdcb0168bd
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 1
|6 P:(DE-He78)80e100a16534f5fc67f7436ee67a47f9
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 3
|6 P:(DE-HGF)0
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 4
|6 P:(DE-He78)75b4c256a6de824414938cf2aaeff88e
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 5
|6 P:(DE-HGF)0
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 6
|6 P:(DE-HGF)0
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 7
|6 P:(DE-He78)ad0ed5484fb008b6597171a8a348b26f
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 8
|6 P:(DE-He78)b4d6f1a97e32c14ff3857fd0c8eda6be
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 9
|6 P:(DE-HGF)0
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 10
|6 P:(DE-HGF)0
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-315
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Bildgebung und Radioonkologie
|x 0
914 1 _ |y 2021
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2021-01-27
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2021-01-27
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-01-27
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b INT J RADIAT ONCOL : 2019
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2021-01-27
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2021-01-27
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b INT J RADIAT ONCOL : 2019
|d 2021-01-27
920 1 _ |0 I:(DE-He78)FR01-20160331
|k FR01
|l DKTK FR zentral
|x 0
920 1 _ |0 I:(DE-He78)E055-20160331
|k E055
|l E055 KKE Molekulare Radioonkologie
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)FR01-20160331
980 _ _ |a I:(DE-He78)E055-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21