001     177240
005     20240229133734.0
024 7 _ |a 10.1002/mp.15283
|2 doi
024 7 _ |a pmid:34709667
|2 pmid
024 7 _ |a 0094-2405
|2 ISSN
024 7 _ |a 1522-8541
|2 ISSN
024 7 _ |a 2473-4209
|2 ISSN
024 7 _ |a altmetric:117204712
|2 altmetric
037 _ _ |a DKFZ-2021-02374
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Bär, Esther
|b 0
245 _ _ |a Experimental comparison of photon versus particle computed tomography to predict tissue relative stopping powers.
260 _ _ |a College Park, Md.
|c 2022
|b AAPM
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1642495567_14352
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a #LA:E041# / 2022 Jan;49(1):474-487
520 _ _ |a Measurements comparing relative stopping power (RSP) accuracy of state-of-the-art systems representing single-energy and dual-energy computed tomography (SECT/DECT) with proton CT (pCT) and helium CT (HeCT) in biological tissue samples.We used 16 porcine and bovine samples of various tissue types and water, covering an RSP range from 0.90±0.06 to 1.78±0.05. Samples were packed and sealed into 3D-printed cylinders (d = 2 cm, h = 5 cm) and inserted into an in-house designed cylindrical PMMA phantom (d = 10 cm, h = 10 cm). We scanned the phantom in a commercial SECT and DECT (120 kV; 100 kV & 140 kV/Sn (tin-filtered)); and acquired pCT and HeCT (E ∼ 200 MeV/u, 2∘ steps, ∼ 6.2 × 106 (p)/∼ 2.3 × 106 (He) particles/projection) with a particle imaging prototype. RSP maps were calculated from SECT/DECT using stoichiometric methods and from pCT/HeCT using the DROP-TVS algorithm. We estimated the average RSP of each tissue per modality in cylindrical volumes of interest and compared it to ground truth RSP taken from peak-detection measurements.Throughout all samples, we observe the following root-mean-squared RSP prediction errors ± combined uncertainty from reference measurement and imaging: SECT 3.10±2.88%, DECT 0.75±2.80%, pCT 1.19±2.81%, HeCT 0.78±2.81%. The largest mean errors ± combined uncertainty per modality are SECT 8.22±2.79% in cortical bone, DECT 1.74±2.00% in back fat, pCT 1.80±4.27% in bone marrow, HeCT 1.37±4.25% in bone marrow. Ring artefacts were observed in both pCT and HeCT reconstructions, imposing a systematic shift to predicted RSPs.Comparing state-of-the-art SECT/DECT technology and a pCT/HeCT prototype, DECT provided the most accurate RSP prediction, closely followed by particle imaging. The novel modalities pCT and HeCT have the potential to further improve on RSP accuracies with work focusing on the origin and correction of ring artefacts. Future work will study accuracy of proton treatment plans using RSP maps from investigated imaging modalities.
536 _ _ |a 315 - Bildgebung und Radioonkologie (POF4-315)
|0 G:(DE-HGF)POF4-315
|c POF4-315
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo01.inet.dkfz-heidelberg.de
650 _ 7 |a Dual-energy CT
|2 Other
650 _ 7 |a particle CT
|2 Other
650 _ 7 |a proton stopping power
|2 Other
700 1 _ |a Volz, Lennart
|0 P:(DE-He78)84cedecbe48f90adc2a1453780bdaf33
|b 1
|u dkfz
700 1 _ |a Collins-Fekete, Charles-Antoine
|b 2
700 1 _ |a Brons, Stephan
|b 3
700 1 _ |a Runz, Armin
|0 P:(DE-He78)3b3ff5cc513dd71b560eb6a18e4d0c07
|b 4
|u dkfz
700 1 _ |a Schulte, Reinhard Wilhelm
|b 5
700 1 _ |a Seco, Joao
|0 P:(DE-He78)102624aca75cfe987c05343d5fdcf2fe
|b 6
|e Last author
|u dkfz
773 _ _ |a 10.1002/mp.15283
|g p. mp.15283
|0 PERI:(DE-600)1466421-5
|n 1
|p 474-487
|t Medical physics
|v 49
|y 2022
|x 2473-4209
909 C O |p VDB
|o oai:inrepo02.dkfz.de:177240
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 1
|6 P:(DE-He78)84cedecbe48f90adc2a1453780bdaf33
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 4
|6 P:(DE-He78)3b3ff5cc513dd71b560eb6a18e4d0c07
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 6
|6 P:(DE-He78)102624aca75cfe987c05343d5fdcf2fe
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-315
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Bildgebung und Radioonkologie
|x 0
914 1 _ |y 2021
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2021-02-02
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-02-02
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2022-11-12
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b MED PHYS : 2021
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2022-11-12
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2022-11-12
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2022-11-12
920 1 _ |0 I:(DE-He78)E041-20160331
|k E041
|l E041 Medizinische Physik in der Radioonkologie
|x 0
920 1 _ |0 I:(DE-He78)E040-20160331
|k E040
|l E040 Med. Physik in der Strahlentherapie
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)E041-20160331
980 _ _ |a I:(DE-He78)E040-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21