001     177241
005     20240229133734.0
024 7 _ |a 10.1007/s10571-021-01157-5
|2 doi
024 7 _ |a pmid:34709498
|2 pmid
024 7 _ |a 0272-4340
|2 ISSN
024 7 _ |a 1573-6830
|2 ISSN
024 7 _ |a altmetric:115884673
|2 altmetric
037 _ _ |a DKFZ-2021-02375
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Bongaarts, Anika
|0 0000-0003-1451-4240
|b 0
245 _ _ |a Distinct DNA Methylation Patterns of Subependymal Giant Cell Astrocytomas in Tuberous Sclerosis Complex.
260 _ _ |a Dordrecht
|c 2022
|b Springer Science + Business Media B.V
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1668687849_16030
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a 2022 Nov;42(8):2863-2892
520 _ _ |a Tuberous sclerosis complex (TSC) is a monogenic disorder caused by mutations in either the TSC1 or TSC2 gene, two key regulators of the mechanistic target of the rapamycin complex pathway. Phenotypically, this leads to growth and formation of hamartomas in several organs, including the brain. Subependymal giant cell astrocytomas (SEGAs) are low-grade brain tumors commonly associated with TSC. Recently, gene expression studies provided evidence that the immune system, the MAPK pathway and extracellular matrix organization play an important role in SEGA development. However, the precise mechanisms behind the gene expression changes in SEGA are still largely unknown, providing a potential role for DNA methylation. We investigated the methylation profile of SEGAs using the Illumina Infinium HumanMethylation450 BeadChip (SEGAs n = 42, periventricular control n = 8). The SEGA methylation profile was enriched for the adaptive immune system, T cell activation, leukocyte mediated immunity, extracellular structure organization and the ERK1 & ERK2 cascade. More interestingly, we identified two subgroups in the SEGA methylation data and show that the differentially expressed genes between the two subgroups are related to the MAPK cascade and adaptive immune response. Overall, this study shows that the immune system, the MAPK pathway and extracellular matrix organization are also affected on DNA methylation level, suggesting that therapeutic intervention on DNA level could be useful for these specific pathways in SEGA. Moreover, we identified two subgroups in SEGA that seem to be driven by changes in the adaptive immune response and MAPK pathway and could potentially hold predictive information on target treatment response.
536 _ _ |a 312 - Funktionelle und strukturelle Genomforschung (POF4-312)
|0 G:(DE-HGF)POF4-312
|c POF4-312
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo01.inet.dkfz-heidelberg.de
650 _ 7 |a Low-grade glioma
|2 Other
650 _ 7 |a Methylation
|2 Other
650 _ 7 |a RNA-sequencing
|2 Other
650 _ 7 |a SEGA
|2 Other
650 _ 7 |a TSC
|2 Other
700 1 _ |a Mijnsbergen, Caroline
|b 1
700 1 _ |a Anink, Jasper J
|b 2
700 1 _ |a Jansen, Floor E
|b 3
700 1 _ |a Spliet, Wim G M
|b 4
700 1 _ |a den Dunnen, Wilfred F A
|b 5
700 1 _ |a Coras, Roland
|b 6
700 1 _ |a Blümcke, Ingmar
|b 7
700 1 _ |a Paulus, Werner
|b 8
700 1 _ |a Gruber, Victoria E
|b 9
700 1 _ |a Scholl, Theresa
|b 10
700 1 _ |a Hainfellner, Johannes A
|b 11
700 1 _ |a Feucht, Martha
|b 12
700 1 _ |a Kotulska, Katarzyna
|b 13
700 1 _ |a Jozwiak, Sergiusz
|b 14
700 1 _ |a Grajkowska, Wieslawa
|b 15
700 1 _ |a Buccoliero, Anna Maria
|b 16
700 1 _ |a Caporalini, Chiara
|b 17
700 1 _ |a Giordano, Flavio
|b 18
700 1 _ |a Genitori, Lorenzo
|b 19
700 1 _ |a Söylemezoğlu, Figen
|b 20
700 1 _ |a Pimentel, José
|b 21
700 1 _ |a Jones, David T W
|0 P:(DE-He78)551bb92841f634070997aa168d818492
|b 22
|u dkfz
700 1 _ |a Scicluna, Brendon P
|b 23
700 1 _ |a Schouten-van Meeteren, Antoinette Y N
|b 24
700 1 _ |a Mühlebner, Angelika
|b 25
700 1 _ |a Mills, James D
|b 26
700 1 _ |a Aronica, Eleonora
|b 27
773 _ _ |a 10.1007/s10571-021-01157-5
|0 PERI:(DE-600)1496697-9
|n 8
|p 2863-2892
|t Cellular and molecular neurobiology
|v 42
|y 2022
|x 1573-6830
909 C O |p VDB
|o oai:inrepo02.dkfz.de:177241
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 22
|6 P:(DE-He78)551bb92841f634070997aa168d818492
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-312
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Funktionelle und strukturelle Genomforschung
|x 0
914 1 _ |y 2021
915 _ _ |a DEAL Springer
|0 StatID:(DE-HGF)3002
|2 StatID
|d 2021-01-27
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2021-01-27
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-27
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2022-11-18
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2022-11-18
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2022-11-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2022-11-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2022-11-18
920 1 _ |0 I:(DE-He78)B360-20160331
|k B360
|l Pediatric Glioma
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)B360-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21