000177243 001__ 177243
000177243 005__ 20240229133734.0
000177243 0247_ $$2doi$$a10.3324/haematol.2021.278952
000177243 0247_ $$2pmid$$apmid:34706496
000177243 0247_ $$2ISSN$$a0390-6078
000177243 0247_ $$2ISSN$$a1592-8721
000177243 037__ $$aDKFZ-2021-02377
000177243 041__ $$aEnglish
000177243 082__ $$a610
000177243 1001_ $$aAllard, Pierre$$b0
000177243 245__ $$aGenetic modifiers of fetal hemoglobin affect the course of sickle cell disease in patients treated with hydroxyurea.
000177243 260__ $$aPavia$$bFerrata Storti Found$$c2022
000177243 264_1 $$2Crossref$$3online$$bFerrata Storti Foundation (Haematologica)$$c2021-10-28
000177243 3367_ $$2DRIVER$$aarticle
000177243 3367_ $$2DataCite$$aOutput Types/Journal article
000177243 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1657019989_11544
000177243 3367_ $$2BibTeX$$aARTICLE
000177243 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000177243 3367_ $$00$$2EndNote$$aJournal Article
000177243 500__ $$a2022 Jul 1;107(7):1577-1588
000177243 520__ $$aThe course of sickle cell disease (SCD) is modified by polymorphisms boosting fetal hemoglobin (HbF) synthesis. However, it has remained an open question how these polymorphisms affect patients who are treated with the HbF-inducing drug hydroxyurea/hydroxycarbamide. The German SCD registry offers the opportunity to answer this question, because >90% of patients are treated according to national guidelines recommending the use of hydroxyurea in all patients above 2 years of age. We analyzed the modifying effect of HbF-related genetic polymorphisms in 417 patients with homozygous SCD >2 years who received hydroxyurea. HbF levels were correlated with higher total hemoglobin levels, lower rates of hemolysis, a lower frequency of painful crises and of red blood cell transfusions. The minor alleles of the polymorphisms in the γ-globin promoter (rs7482144), BCL11A (rs1427407) and HMIP (rs66650371) were strongly associated with increased HbF levels. However, these associations did not translate into lower frequencies of vasoocclusive events that did not differ between patients either carrying or not carrying the HMIP and BCL11A polymorphisms. Patients on hydroxyurea carrying the γ- globin promoter polymorphism demonstrated substantially higher hemoglobin levels (p.
000177243 536__ $$0G:(DE-HGF)POF4-313$$a313 - Krebsrisikofaktoren und Prävention (POF4-313)$$cPOF4-313$$fPOF IV$$x0
000177243 542__ $$2Crossref$$i2021-10-28$$uhttp://creativecommons.org/licenses/by-nc/4.0/
000177243 588__ $$aDataset connected to CrossRef, PubMed, , Journals: inrepo01.inet.dkfz-heidelberg.de
000177243 7001_ $$0P:(DE-He78)1317be4dff03445a99a20f846889aa5a$$aAlhaj, Nareen$$b1
000177243 7001_ $$aLobitz, Stephan$$b2
000177243 7001_ $$aCario, Holger$$b3
000177243 7001_ $$aJarisch, Andreas$$b4
000177243 7001_ $$aGrosse, Regine$$b5
000177243 7001_ $$aOevermann, Lena$$b6
000177243 7001_ $$aHakimeh, Dani$$b7
000177243 7001_ $$aTagliaferri, Laura$$b8
000177243 7001_ $$aKohne, Elisabeth$$b9
000177243 7001_ $$0P:(DE-He78)bb6a7a70f976eb8df1769944bf913596$$aKopp-Schneider, Annette$$b10$$udkfz
000177243 7001_ $$aKulozik, Andreas E$$b11
000177243 7001_ $$aKunz, Joachim B$$b12
000177243 77318 $$2Crossref$$3journal-article$$a10.3324/haematol.2021.278952$$bFerrata Storti Foundation (Haematologica)$$d2021-10-28$$n7$$p1577-1588$$tHaematologica$$v107$$x1592-8721$$y2021
000177243 773__ $$0PERI:(DE-600)2805244-4$$a10.3324/haematol.2021.278952$$n7$$p1577-1588$$tHaematologica$$v107$$x1592-8721$$y2021
000177243 909CO $$ooai:inrepo02.dkfz.de:177243$$pVDB
000177243 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)1317be4dff03445a99a20f846889aa5a$$aDeutsches Krebsforschungszentrum$$b1$$kDKFZ
000177243 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)bb6a7a70f976eb8df1769944bf913596$$aDeutsches Krebsforschungszentrum$$b10$$kDKFZ
000177243 9131_ $$0G:(DE-HGF)POF4-313$$1G:(DE-HGF)POF4-310$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vKrebsrisikofaktoren und Prävention$$x0
000177243 9141_ $$y2021
000177243 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-06-12
000177243 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2020-06-12
000177243 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$f2020-06-12
000177243 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$f2020-06-12
000177243 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2020-06-12
000177243 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-23
000177243 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-23
000177243 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2020-08-11T15:43:53Z
000177243 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2020-08-11T15:43:53Z
000177243 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Peer review$$d2020-08-11T15:43:53Z
000177243 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-23
000177243 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-23
000177243 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2022-11-23
000177243 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine$$d2022-11-23
000177243 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2022-11-23
000177243 9201_ $$0I:(DE-He78)C060-20160331$$kC060$$lC060 Biostatistik$$x0
000177243 980__ $$ajournal
000177243 980__ $$aVDB
000177243 980__ $$aI:(DE-He78)C060-20160331
000177243 980__ $$aUNRESTRICTED
000177243 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1073/pnas.0804799105$$uLettre G, Sankaran VG, Bezerra MA. DNA polymorphisms at the BCL11A, HBS1L-MYB, and beta-globin loci associate with fetal hemoglobin levels and pain crises in sickle cell disease. Proc Natl Acad Sci U S A. 2008; 105(33):11869-11874.
000177243 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1056/NEJM198206173062402$$uHiggs DR, Aldridge BE, Lamb J. The interaction of alpha-thalassemia and homozygous sickle-cell disease. N Engl J Med. 1982; 306(24):1441-1446.
000177243 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1182/blood.V8.11.1008.1008$$uSinger K, Singer L. Studies on abnormal hemoglobins : VIII. The gelling phenomenon of sickle cell hemoglobin: its biologic and diagnostic significance. Blood. 1953; 8(11):1008-1023.
000177243 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1101/cshperspect.a015032$$uLettre G. The search for genetic modifiers of disease severity in the beta-hemoglobinopathies. Cold Spring Harb Perspect Med. 2012; 2(10):a015032.
000177243 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.bcmd.2017.01.014$$uMeier ER, Fasano RM, Levett PR. A systematic review of the literature for severity predictors in children with sickle cell anemia. Blood Cells Mol Dis. 2017; 65:86-94.
000177243 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1002/ajh.23457$$uSheehan VA, Luo Z, Flanagan JM. Genetic modifiers of sickle cell anemia in the BABY HUG cohort: influence on laboratory and clinical phenotypes. Am J Hematol. 2013; 88(7):571-576.
000177243 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1002/ajh.24680$$uAleluia MM, Santiago RP, da Guarda CC. Genetic modulation of fetal hemoglobin in hydroxyurea-treated sickle cell anemia. Am J Hematol. 2017; 92(5):E70-E72.
000177243 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1371/journal.pone.0110740$$uSheehan VA, Crosby JR, Sabo A. Whole exome sequencing identifies novel genes for fetal hemoglobin response to hydroxyurea in children with sickle cell anemia. PloS One. 2014; 9(10):e110740.
000177243 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1182/blood-2011-07-364190$$uWare RE, Despotovic JM, Mortier NA. Pharmacokinetics, pharmacodynamics, and pharmacogenetics of hydroxyurea treatment for children with sickle cell anemia. Blood. 2011; 118(18):4985-4991.
000177243 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.bcmd.2016.11.002$$uFriedrisch JR, Sheehan V, Flanagan JM. The role of BCL11A and HMIP-2 polymorphisms on endogenous and hydroxyurea induced levels of fetal hemoglobin in sickle cell anemia patients from southern Brazil. Blood Cells Mol Dis. 2016; 62:32-37.
000177243 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1002/ajh.24027$$uAdekile A, Menzel S, Gupta R. Response to hydroxyurea among Kuwaiti patients with sickle cell disease and elevated baseline HbF levels. Am J Hematol. 2015; 90(7):E138-139.
000177243 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1002/pbc.22754$$uGreen NS, Barral S. Genetic modifiers of HbF and response to hydroxyurea in sickle cell disease. Pediatr Blood Cancer. 2011; 56(2):177-181.
000177243 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1371/journal.pone.0055709$$uGreen NS, Ender KL, Pashankar F. Candidate sequence variants and fetal hemoglobin in children with sickle cell disease treated with hydroxyurea. PloS One. 2013; 8(2):e55709.
000177243 999C5 $$2Crossref$$uDover GJ, Charache S, Boyer SH. Increasing fetal hemoglobin in sickle cell disease: comparisons of 5-azacytidine (subcutaneous or oral) with hydroxyurea. Trans Assoc Am Physicians. 1984; 97:140-145.
000177243 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/s40291-018-0370-8$$uMenzel S, Thein SL. Genetic modifiers of fetal haemoglobin in sickle cell disease. Mol Diagn Ther. 2019; 23(2):235-244.
000177243 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.gde.2015.08.001$$uBauer DE, Orkin SH. Hemoglobin switching's surprise: the versatile transcription factor BCL11A is a master repressor of fetal hemoglobin. Curr Opin Genet Dev. 2015; 33:62-70.
000177243 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1097/MOH.0b013e32834521dd$$uMcGann PT, Ware RE. Hydroxyurea for sickle cell anemia: what have we learned and what questions still remain?. Curr Opin Hematol. 2011; 18(3):158-165.
000177243 999C5 $$2Crossref$$uCario H, Grosse R, Jarisch A, Kulozik AE, Kunz JB, Lobitz S. AWMF-Leitlinie 025/016 Sichelzellkrankheit. 2014.
000177243 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1002/pbc.28130$$uKunz JB, Lobitz S, Grosse R. Sickle cell disease in Germany: results from a national registry. Pediatr Blood Cancer. 2019; 67(4):e28130.
000177243 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1126/science.1242088$$uBauer DE, Kamran SC, Lessard S. An erythroid enhancer of BCL11A subject to genetic variation determines fetal hemoglobin level. Science. 2013; 342(6155):253-257.
000177243 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1182/blood-2010-11-317081$$uFarrell JJ, Sherva RM, Chen ZY. A 3-bp deletion in the HBS1L-MYB intergenic region on chromosome 6q23 is associated with HbF expression. Blood. 2011; 117(18):4935-4945.
000177243 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1182/blood.V66.4.783.783$$uGilman JG, Huisman TH. DNA sequence variation associated with elevated fetal G gamma globin production. Blood. 1985; 66(4):783-787.
000177243 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/jhg.2011.12$$uBhatnagar P, Purvis S, Barron-Casella E. Genome-wide association study identifies genetic variants influencing F-cell levels in sickle-cell patients. J Hum Genet. 2011; 56(4):316-323.
000177243 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1182/blood.V66.6.1463.1463$$uLabie D, Dunda-Belkhodja O, Rouabhi F, Pagnier J, Ragusa A, Nagel RL. The -158 site 5' to the G gamma gene and G gamma expression. Blood. 1985; 66(6):1463-1465.
000177243 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1182/blood.V69.6.1742.1742$$uKulozik AE, Kar BC, Satapathy RK, Serjeant BE, Serjeant GR, Weatherall DJ. Fetal hemoglobin levels and beta (s) globin haplotypes in an Indian populations with sickle cell disease. Blood. 1987; 69(6):1742-1746.
000177243 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1182/bloodadvances.2017009811$$uGardner K, Fulford T, Silver N. g(HbF): a genetic model of fetal hemoglobin in sickle cell disease. Blood Adv. 2018; 2(3):235-239.
000177243 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1111/j.1365-2141.1992.tb08180.x$$uBowden DK, Vickers MA, Higgs DR. A PCR-based strategy to detect the common severe determinants of α thalassaemia. Br J Haematol. 1992; 81(1):104-108.
000177243 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1056/NEJM199505183322001$$uCharache S, Terrin ML, Moore RD. Effect of hydroxyurea on the frequency of painful crises in sickle cell anemia. Investigators of the Multicenter Study of Hydroxyurea in Sickle Cell Anemia. N Engl J Med. 1995; 332(20):1317-1322.
000177243 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1002/jcla.10070$$uBorba R, Lima CS, Grotto HZ. Reticulocyte parameters and hemoglobin F production in sickle cell disease patients undergoing hydroxyurea therapy. J Clin Lab Anal. 2003; 17(2):66-72.
000177243 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/S0140-6736(86)92205-1$$uKar BC, Satapathy RK, Kulozik AE. Sickle cell disease in Orissa State, India. Lancet. 1986; 2(8517):1198-1201.
000177243 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1182/blood-2020-143139$$uMarahatta A, Flanagan JM, Howard TA. Genetic variants that influence fetal hemoglobin expression from hydroxyurea treatment. Blood. 2020; 136(Suppl 1):8-9.
000177243 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1002/ajh.23859$$uMtatiro SN, Makani J, Mmbando B, Thein SL, Menzel S, Cox SE. Genetic variants at HbF-modifier loci moderate anemia and leukocytosis in sickle cell disease in Tanzania. Am J Hematol. 2015; 90(1):E1-4.
000177243 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/s00277-019-03783-y$$uNicolau M, Vargas S, Silva M. Genetic modulators of fetal hemoglobin expression and ischemic stroke occurrence in African descendant children with sickle cell anemia. Ann Hematol. 2019; 98(12):2673-2681.
000177243 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.4084/mjhid.2012.001$$uPandey S, Pandey S, Mishra RM, Saxena R. Modulating effect of the -158 gamma (C-->T) Xmn1 polymorphism in Indian sickle cell patients. Mediterr J Hematol Infect Dis. 2012; 4(1):e2012001.
000177243 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1002/pbc.27934$$uGueye Tall F, Martin C, Ndour EHM. Combined and differential effects of alpha-thalassemia and HbF-quantitative trait loci in Senegalese hydroxyurea-free children with sickle cell anemia. Pediatr Blood Cancer. 2019; 66(10):e27934.
000177243 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1111/ijlh.12927$$uAl-Allawi N, Qadir SMA, Puehringer H, Chui DHK, Farrell JJ, Oberkanins C. The association of HBG2, BCL11A, and HMIP polymorphisms with fetal hemoglobin and clinical phenotype in Iraqi Kurds with sickle cell disease. Int J Lab Hematol. 2018; 41(1):87-93.
000177243 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/s11033-014-3195-5$$uDadheech S, Jain S, Madhulatha D. Association of Xmn1-158 gammaG variant with severity and HbF levels in beta-thalassemia major and sickle cell anaemia. Mol Biol Rep. 2014; 41(5):3331-3337.
000177243 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.bcmd.2008.08.003$$uItalia K, Jain D, Gattani S. Hydroxyurea in sickle cell disease--a study of clinico-pharmacological efficacy in the Indian haplotype. Blood Cells Mol Dis. 2009; 42(1):25-31.
000177243 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1182/blood-2013-09-528067$$uSteinberg MH, Chui DH, Dover GJ, Sebastiani P, Alsultan A. Fetal hemoglobin in sickle cell anemia: a glass half full?. Blood. 2014; 123(4):481-485.
000177243 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1002/ajh.23232$$uSteinberg MH, Sebastiani P. Genetic modifiers of sickle cell disease. Am J Hematol. 2012; 87(8):795-803.
000177243 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1001/archpedi.1994.02170080026005$$uBrown AK, Sleeper LA, Miller ST, Pegelow CH, Gill FM, Waclawiw MA. Reference values and hematologic changes from birth to 5 years in patients with sickle cell disease. Cooperative Study of Sickle Cell Disease. Arch Pediatr Adolesc Med. 1994; 148(8):796-804.