001     177243
005     20240229133734.0
024 7 _ |a 10.3324/haematol.2021.278952
|2 doi
024 7 _ |a pmid:34706496
|2 pmid
024 7 _ |a 0390-6078
|2 ISSN
024 7 _ |a 1592-8721
|2 ISSN
037 _ _ |a DKFZ-2021-02377
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Allard, Pierre
|b 0
245 _ _ |a Genetic modifiers of fetal hemoglobin affect the course of sickle cell disease in patients treated with hydroxyurea.
260 _ _ |a Pavia
|c 2022
|b Ferrata Storti Found
264 _ 1 |3 online
|2 Crossref
|b Ferrata Storti Foundation (Haematologica)
|c 2021-10-28
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1657019989_11544
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a 2022 Jul 1;107(7):1577-1588
520 _ _ |a The course of sickle cell disease (SCD) is modified by polymorphisms boosting fetal hemoglobin (HbF) synthesis. However, it has remained an open question how these polymorphisms affect patients who are treated with the HbF-inducing drug hydroxyurea/hydroxycarbamide. The German SCD registry offers the opportunity to answer this question, because >90% of patients are treated according to national guidelines recommending the use of hydroxyurea in all patients above 2 years of age. We analyzed the modifying effect of HbF-related genetic polymorphisms in 417 patients with homozygous SCD >2 years who received hydroxyurea. HbF levels were correlated with higher total hemoglobin levels, lower rates of hemolysis, a lower frequency of painful crises and of red blood cell transfusions. The minor alleles of the polymorphisms in the γ-globin promoter (rs7482144), BCL11A (rs1427407) and HMIP (rs66650371) were strongly associated with increased HbF levels. However, these associations did not translate into lower frequencies of vasoocclusive events that did not differ between patients either carrying or not carrying the HMIP and BCL11A polymorphisms. Patients on hydroxyurea carrying the γ- globin promoter polymorphism demonstrated substantially higher hemoglobin levels (p.
536 _ _ |a 313 - Krebsrisikofaktoren und Prävention (POF4-313)
|0 G:(DE-HGF)POF4-313
|c POF4-313
|f POF IV
|x 0
542 _ _ |i 2021-10-28
|2 Crossref
|u http://creativecommons.org/licenses/by-nc/4.0/
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo01.inet.dkfz-heidelberg.de
700 1 _ |a Alhaj, Nareen
|0 P:(DE-He78)1317be4dff03445a99a20f846889aa5a
|b 1
700 1 _ |a Lobitz, Stephan
|b 2
700 1 _ |a Cario, Holger
|b 3
700 1 _ |a Jarisch, Andreas
|b 4
700 1 _ |a Grosse, Regine
|b 5
700 1 _ |a Oevermann, Lena
|b 6
700 1 _ |a Hakimeh, Dani
|b 7
700 1 _ |a Tagliaferri, Laura
|b 8
700 1 _ |a Kohne, Elisabeth
|b 9
700 1 _ |a Kopp-Schneider, Annette
|0 P:(DE-He78)bb6a7a70f976eb8df1769944bf913596
|b 10
|u dkfz
700 1 _ |a Kulozik, Andreas E
|b 11
700 1 _ |a Kunz, Joachim B
|b 12
773 1 8 |a 10.3324/haematol.2021.278952
|b Ferrata Storti Foundation (Haematologica)
|d 2021-10-28
|n 7
|p 1577-1588
|3 journal-article
|2 Crossref
|t Haematologica
|v 107
|y 2021
|x 1592-8721
773 _ _ |a 10.3324/haematol.2021.278952
|0 PERI:(DE-600)2805244-4
|n 7
|p 1577-1588
|t Haematologica
|v 107
|y 2021
|x 1592-8721
909 C O |p VDB
|o oai:inrepo02.dkfz.de:177243
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 1
|6 P:(DE-He78)1317be4dff03445a99a20f846889aa5a
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 10
|6 P:(DE-He78)bb6a7a70f976eb8df1769944bf913596
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-313
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Krebsrisikofaktoren und Prävention
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-06-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2020-06-12
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|f 2020-06-12
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|f 2020-06-12
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2020-06-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2020-08-11T15:43:53Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2020-08-11T15:43:53Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Peer review
|d 2020-08-11T15:43:53Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2022-11-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
|d 2022-11-23
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2022-11-23
920 1 _ |0 I:(DE-He78)C060-20160331
|k C060
|l C060 Biostatistik
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)C060-20160331
980 _ _ |a UNRESTRICTED
999 C 5 |a 10.1073/pnas.0804799105
|9 -- missing cx lookup --
|2 Crossref
|u Lettre G, Sankaran VG, Bezerra MA. DNA polymorphisms at the BCL11A, HBS1L-MYB, and beta-globin loci associate with fetal hemoglobin levels and pain crises in sickle cell disease. Proc Natl Acad Sci U S A. 2008; 105(33):11869-11874.
999 C 5 |a 10.1056/NEJM198206173062402
|9 -- missing cx lookup --
|2 Crossref
|u Higgs DR, Aldridge BE, Lamb J. The interaction of alpha-thalassemia and homozygous sickle-cell disease. N Engl J Med. 1982; 306(24):1441-1446.
999 C 5 |a 10.1182/blood.V8.11.1008.1008
|9 -- missing cx lookup --
|2 Crossref
|u Singer K, Singer L. Studies on abnormal hemoglobins : VIII. The gelling phenomenon of sickle cell hemoglobin: its biologic and diagnostic significance. Blood. 1953; 8(11):1008-1023.
999 C 5 |a 10.1101/cshperspect.a015032
|9 -- missing cx lookup --
|2 Crossref
|u Lettre G. The search for genetic modifiers of disease severity in the beta-hemoglobinopathies. Cold Spring Harb Perspect Med. 2012; 2(10):a015032.
999 C 5 |a 10.1016/j.bcmd.2017.01.014
|9 -- missing cx lookup --
|2 Crossref
|u Meier ER, Fasano RM, Levett PR. A systematic review of the literature for severity predictors in children with sickle cell anemia. Blood Cells Mol Dis. 2017; 65:86-94.
999 C 5 |a 10.1002/ajh.23457
|9 -- missing cx lookup --
|2 Crossref
|u Sheehan VA, Luo Z, Flanagan JM. Genetic modifiers of sickle cell anemia in the BABY HUG cohort: influence on laboratory and clinical phenotypes. Am J Hematol. 2013; 88(7):571-576.
999 C 5 |a 10.1002/ajh.24680
|9 -- missing cx lookup --
|2 Crossref
|u Aleluia MM, Santiago RP, da Guarda CC. Genetic modulation of fetal hemoglobin in hydroxyurea-treated sickle cell anemia. Am J Hematol. 2017; 92(5):E70-E72.
999 C 5 |a 10.1371/journal.pone.0110740
|9 -- missing cx lookup --
|2 Crossref
|u Sheehan VA, Crosby JR, Sabo A. Whole exome sequencing identifies novel genes for fetal hemoglobin response to hydroxyurea in children with sickle cell anemia. PloS One. 2014; 9(10):e110740.
999 C 5 |a 10.1182/blood-2011-07-364190
|9 -- missing cx lookup --
|2 Crossref
|u Ware RE, Despotovic JM, Mortier NA. Pharmacokinetics, pharmacodynamics, and pharmacogenetics of hydroxyurea treatment for children with sickle cell anemia. Blood. 2011; 118(18):4985-4991.
999 C 5 |a 10.1016/j.bcmd.2016.11.002
|9 -- missing cx lookup --
|2 Crossref
|u Friedrisch JR, Sheehan V, Flanagan JM. The role of BCL11A and HMIP-2 polymorphisms on endogenous and hydroxyurea induced levels of fetal hemoglobin in sickle cell anemia patients from southern Brazil. Blood Cells Mol Dis. 2016; 62:32-37.
999 C 5 |a 10.1002/ajh.24027
|9 -- missing cx lookup --
|2 Crossref
|u Adekile A, Menzel S, Gupta R. Response to hydroxyurea among Kuwaiti patients with sickle cell disease and elevated baseline HbF levels. Am J Hematol. 2015; 90(7):E138-139.
999 C 5 |a 10.1002/pbc.22754
|9 -- missing cx lookup --
|2 Crossref
|u Green NS, Barral S. Genetic modifiers of HbF and response to hydroxyurea in sickle cell disease. Pediatr Blood Cancer. 2011; 56(2):177-181.
999 C 5 |a 10.1371/journal.pone.0055709
|9 -- missing cx lookup --
|2 Crossref
|u Green NS, Ender KL, Pashankar F. Candidate sequence variants and fetal hemoglobin in children with sickle cell disease treated with hydroxyurea. PloS One. 2013; 8(2):e55709.
999 C 5 |2 Crossref
|u Dover GJ, Charache S, Boyer SH. Increasing fetal hemoglobin in sickle cell disease: comparisons of 5-azacytidine (subcutaneous or oral) with hydroxyurea. Trans Assoc Am Physicians. 1984; 97:140-145.
999 C 5 |a 10.1007/s40291-018-0370-8
|9 -- missing cx lookup --
|2 Crossref
|u Menzel S, Thein SL. Genetic modifiers of fetal haemoglobin in sickle cell disease. Mol Diagn Ther. 2019; 23(2):235-244.
999 C 5 |a 10.1016/j.gde.2015.08.001
|9 -- missing cx lookup --
|2 Crossref
|u Bauer DE, Orkin SH. Hemoglobin switching's surprise: the versatile transcription factor BCL11A is a master repressor of fetal hemoglobin. Curr Opin Genet Dev. 2015; 33:62-70.
999 C 5 |a 10.1097/MOH.0b013e32834521dd
|9 -- missing cx lookup --
|2 Crossref
|u McGann PT, Ware RE. Hydroxyurea for sickle cell anemia: what have we learned and what questions still remain?. Curr Opin Hematol. 2011; 18(3):158-165.
999 C 5 |2 Crossref
|u Cario H, Grosse R, Jarisch A, Kulozik AE, Kunz JB, Lobitz S. AWMF-Leitlinie 025/016 Sichelzellkrankheit. 2014.
999 C 5 |a 10.1002/pbc.28130
|9 -- missing cx lookup --
|2 Crossref
|u Kunz JB, Lobitz S, Grosse R. Sickle cell disease in Germany: results from a national registry. Pediatr Blood Cancer. 2019; 67(4):e28130.
999 C 5 |a 10.1126/science.1242088
|9 -- missing cx lookup --
|2 Crossref
|u Bauer DE, Kamran SC, Lessard S. An erythroid enhancer of BCL11A subject to genetic variation determines fetal hemoglobin level. Science. 2013; 342(6155):253-257.
999 C 5 |a 10.1182/blood-2010-11-317081
|9 -- missing cx lookup --
|2 Crossref
|u Farrell JJ, Sherva RM, Chen ZY. A 3-bp deletion in the HBS1L-MYB intergenic region on chromosome 6q23 is associated with HbF expression. Blood. 2011; 117(18):4935-4945.
999 C 5 |a 10.1182/blood.V66.4.783.783
|9 -- missing cx lookup --
|2 Crossref
|u Gilman JG, Huisman TH. DNA sequence variation associated with elevated fetal G gamma globin production. Blood. 1985; 66(4):783-787.
999 C 5 |a 10.1038/jhg.2011.12
|9 -- missing cx lookup --
|2 Crossref
|u Bhatnagar P, Purvis S, Barron-Casella E. Genome-wide association study identifies genetic variants influencing F-cell levels in sickle-cell patients. J Hum Genet. 2011; 56(4):316-323.
999 C 5 |a 10.1182/blood.V66.6.1463.1463
|9 -- missing cx lookup --
|2 Crossref
|u Labie D, Dunda-Belkhodja O, Rouabhi F, Pagnier J, Ragusa A, Nagel RL. The -158 site 5' to the G gamma gene and G gamma expression. Blood. 1985; 66(6):1463-1465.
999 C 5 |a 10.1182/blood.V69.6.1742.1742
|9 -- missing cx lookup --
|2 Crossref
|u Kulozik AE, Kar BC, Satapathy RK, Serjeant BE, Serjeant GR, Weatherall DJ. Fetal hemoglobin levels and beta (s) globin haplotypes in an Indian populations with sickle cell disease. Blood. 1987; 69(6):1742-1746.
999 C 5 |a 10.1182/bloodadvances.2017009811
|9 -- missing cx lookup --
|2 Crossref
|u Gardner K, Fulford T, Silver N. g(HbF): a genetic model of fetal hemoglobin in sickle cell disease. Blood Adv. 2018; 2(3):235-239.
999 C 5 |a 10.1111/j.1365-2141.1992.tb08180.x
|9 -- missing cx lookup --
|2 Crossref
|u Bowden DK, Vickers MA, Higgs DR. A PCR-based strategy to detect the common severe determinants of α thalassaemia. Br J Haematol. 1992; 81(1):104-108.
999 C 5 |a 10.1056/NEJM199505183322001
|9 -- missing cx lookup --
|2 Crossref
|u Charache S, Terrin ML, Moore RD. Effect of hydroxyurea on the frequency of painful crises in sickle cell anemia. Investigators of the Multicenter Study of Hydroxyurea in Sickle Cell Anemia. N Engl J Med. 1995; 332(20):1317-1322.
999 C 5 |a 10.1002/jcla.10070
|9 -- missing cx lookup --
|2 Crossref
|u Borba R, Lima CS, Grotto HZ. Reticulocyte parameters and hemoglobin F production in sickle cell disease patients undergoing hydroxyurea therapy. J Clin Lab Anal. 2003; 17(2):66-72.
999 C 5 |a 10.1016/S0140-6736(86)92205-1
|9 -- missing cx lookup --
|2 Crossref
|u Kar BC, Satapathy RK, Kulozik AE. Sickle cell disease in Orissa State, India. Lancet. 1986; 2(8517):1198-1201.
999 C 5 |a 10.1182/blood-2020-143139
|9 -- missing cx lookup --
|2 Crossref
|u Marahatta A, Flanagan JM, Howard TA. Genetic variants that influence fetal hemoglobin expression from hydroxyurea treatment. Blood. 2020; 136(Suppl 1):8-9.
999 C 5 |a 10.1002/ajh.23859
|9 -- missing cx lookup --
|2 Crossref
|u Mtatiro SN, Makani J, Mmbando B, Thein SL, Menzel S, Cox SE. Genetic variants at HbF-modifier loci moderate anemia and leukocytosis in sickle cell disease in Tanzania. Am J Hematol. 2015; 90(1):E1-4.
999 C 5 |a 10.1007/s00277-019-03783-y
|9 -- missing cx lookup --
|2 Crossref
|u Nicolau M, Vargas S, Silva M. Genetic modulators of fetal hemoglobin expression and ischemic stroke occurrence in African descendant children with sickle cell anemia. Ann Hematol. 2019; 98(12):2673-2681.
999 C 5 |a 10.4084/mjhid.2012.001
|9 -- missing cx lookup --
|2 Crossref
|u Pandey S, Pandey S, Mishra RM, Saxena R. Modulating effect of the -158 gamma (C-->T) Xmn1 polymorphism in Indian sickle cell patients. Mediterr J Hematol Infect Dis. 2012; 4(1):e2012001.
999 C 5 |a 10.1002/pbc.27934
|9 -- missing cx lookup --
|2 Crossref
|u Gueye Tall F, Martin C, Ndour EHM. Combined and differential effects of alpha-thalassemia and HbF-quantitative trait loci in Senegalese hydroxyurea-free children with sickle cell anemia. Pediatr Blood Cancer. 2019; 66(10):e27934.
999 C 5 |a 10.1111/ijlh.12927
|9 -- missing cx lookup --
|2 Crossref
|u Al-Allawi N, Qadir SMA, Puehringer H, Chui DHK, Farrell JJ, Oberkanins C. The association of HBG2, BCL11A, and HMIP polymorphisms with fetal hemoglobin and clinical phenotype in Iraqi Kurds with sickle cell disease. Int J Lab Hematol. 2018; 41(1):87-93.
999 C 5 |a 10.1007/s11033-014-3195-5
|9 -- missing cx lookup --
|2 Crossref
|u Dadheech S, Jain S, Madhulatha D. Association of Xmn1-158 gammaG variant with severity and HbF levels in beta-thalassemia major and sickle cell anaemia. Mol Biol Rep. 2014; 41(5):3331-3337.
999 C 5 |a 10.1016/j.bcmd.2008.08.003
|9 -- missing cx lookup --
|2 Crossref
|u Italia K, Jain D, Gattani S. Hydroxyurea in sickle cell disease--a study of clinico-pharmacological efficacy in the Indian haplotype. Blood Cells Mol Dis. 2009; 42(1):25-31.
999 C 5 |a 10.1182/blood-2013-09-528067
|9 -- missing cx lookup --
|2 Crossref
|u Steinberg MH, Chui DH, Dover GJ, Sebastiani P, Alsultan A. Fetal hemoglobin in sickle cell anemia: a glass half full?. Blood. 2014; 123(4):481-485.
999 C 5 |a 10.1002/ajh.23232
|9 -- missing cx lookup --
|2 Crossref
|u Steinberg MH, Sebastiani P. Genetic modifiers of sickle cell disease. Am J Hematol. 2012; 87(8):795-803.
999 C 5 |a 10.1001/archpedi.1994.02170080026005
|9 -- missing cx lookup --
|2 Crossref
|u Brown AK, Sleeper LA, Miller ST, Pegelow CH, Gill FM, Waclawiw MA. Reference values and hematologic changes from birth to 5 years in patients with sickle cell disease. Cooperative Study of Sickle Cell Disease. Arch Pediatr Adolesc Med. 1994; 148(8):796-804.


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21