001     177254
005     20240229133735.0
024 7 _ |a 10.1002/acm2.13465
|2 doi
024 7 _ |a pmid:34724327
|2 pmid
037 _ _ |a DKFZ-2021-02388
041 _ _ |a English
082 _ _ |a 530
100 1 _ |a Longarino, Friderike
|0 P:(DE-He78)b46c11295b94a94d71c0d912fc1b858f
|b 0
|e First author
245 _ _ |a Dual-layer spectral CT for proton, helium, and carbon ion beam therapy planning of brain tumors.
260 _ _ |a Reston, Va.
|c 2022
|b ACMP
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1642587737_1939
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a #EA:E050# / Volume23, Issue1 January 2022 e13465
520 _ _ |a Pretreatment computed tomography (CT) imaging is an essential component of the particle therapy treatment planning chain. Treatment planning and optimization with charged particles require accurate and precise estimations of ion beam range in tissues, characterized by the stopping power ratio (SPR). Reduction of range uncertainties arising from conventional CT-number-to-SPR conversion based on single-energy CT (SECT) imaging is of importance for improving clinical practice. Here, the application of a novel imaging and computational methodology using dual-layer spectral CT (DLCT) was performed toward refining patient-specific SPR estimates. A workflow for DLCT-based treatment planning was devised to evaluate SPR prediction for proton, helium, and carbon ion beam therapy planning in the brain. DLCT- and SECT-based SPR predictions were compared in homogeneous and heterogeneous anatomical regions. This study included eight patients scanned for diagnostic purposes with a DLCT scanner. For each patient, four different treatment plans were created, simulating tumors in different parts of the brain. For homogeneous anatomical regions, mean SPR differences of about 1% between the DLCT- and SECT-based approaches were found. In plans of heterogeneous anatomies, relative (absolute) proton range shifts of 0.6% (0.4 mm) in the mean and up to 4.4% (2.1 mm) at the distal fall-off were observed. In the investigated cohort, 12% of the evaluated organs-at-risk (OARs) presented differences in mean or maximum dose of more than 0.5 Gy (RBE) and up to 6.8 Gy (RBE) over the entire treatment. Range shifts and dose differences in OARs between DLCT and SECT in helium and carbon ion treatment plans were similar to protons. In the majority of investigated cases (75th percentile), SECT- and DLCT-based range estimations were within 0.6 mm. Nonetheless, the magnitude of patient-specific range deviations between SECT and DLCT was clinically relevant in heterogeneous anatomical sites, suggesting further study in larger, more diverse cohorts. Results indicate that patients with brain tumors may benefit from DLCT-based treatment planning.
536 _ _ |a 315 - Bildgebung und Radioonkologie (POF4-315)
|0 G:(DE-HGF)POF4-315
|c POF4-315
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo01.inet.dkfz-heidelberg.de
650 _ 7 |a brain tumors
|2 Other
650 _ 7 |a dual-layer spectral CT
|2 Other
650 _ 7 |a ion beam therapy planning
|2 Other
650 _ 7 |a range uncertainties
|2 Other
650 _ 7 |a stopping power
|2 Other
700 1 _ |a Tessonnier, Thomas
|b 1
700 1 _ |a Mein, Stewart
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Harrabi, Semi B
|b 3
700 1 _ |a Debus, Jürgen
|0 P:(DE-He78)8714da4e45acfa36ce87c291443a9218
|b 4
700 1 _ |a Stiller, Wolfram
|b 5
700 1 _ |a Mairani, Andrea
|b 6
773 _ _ |a 10.1002/acm2.13465
|g p. acm2.13465
|0 PERI:(DE-600)2010347-5
|n 1
|p e13465
|t Journal of applied clinical medical physics
|v 23
|y 2022
|x 1526-9914
909 C O |p VDB
|o oai:inrepo02.dkfz.de:177254
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 0
|6 P:(DE-He78)b46c11295b94a94d71c0d912fc1b858f
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 2
|6 P:(DE-HGF)0
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 4
|6 P:(DE-He78)8714da4e45acfa36ce87c291443a9218
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-315
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Bildgebung und Radioonkologie
|x 0
914 1 _ |y 2021
915 _ _ |a Creative Commons Attribution CC BY (No Version)
|0 LIC:(DE-HGF)CCBYNV
|2 V:(DE-HGF)
|b DOAJ
|d 2021-02-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-02-03
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-02-03
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2021-02-03
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2021-02-03
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J APPL CLIN MED PHYS : 2021
|d 2022-11-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2021-04-16T15:13:28Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2021-04-16T15:13:28Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Double blind peer review
|d 2021-04-16T15:13:28Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-29
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2022-11-29
920 1 _ |0 I:(DE-He78)E050-20160331
|k E050
|l E050 KKE Strahlentherapie
|x 0
920 1 _ |0 I:(DE-He78)E210-20160331
|k E210
|l E210 Translationale Radioonkologie
|x 1
920 1 _ |0 I:(DE-He78)HD01-20160331
|k HD01
|l DKTK HD zentral
|x 2
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)E050-20160331
980 _ _ |a I:(DE-He78)E210-20160331
980 _ _ |a I:(DE-He78)HD01-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21