000177262 001__ 177262
000177262 005__ 20240229133735.0
000177262 0247_ $$2doi$$a10.1002/mp.15333
000177262 0247_ $$2pmid$$apmid:34725829
000177262 0247_ $$2ISSN$$a0094-2405
000177262 0247_ $$2ISSN$$a1522-8541
000177262 0247_ $$2ISSN$$a2473-4209
000177262 0247_ $$2altmetric$$aaltmetric:116143650
000177262 037__ $$aDKFZ-2021-02395
000177262 041__ $$aEnglish
000177262 082__ $$a610
000177262 1001_ $$aThummerer, Adrian$$b0
000177262 245__ $$aClinical suitability of deep learning based synthetic CTs for adaptive proton therapy of lung cancer.
000177262 260__ $$aCollege Park, Md.$$bAAPM$$c2021
000177262 3367_ $$2DRIVER$$aarticle
000177262 3367_ $$2DataCite$$aOutput Types/Journal article
000177262 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1642511132_14848
000177262 3367_ $$2BibTeX$$aARTICLE
000177262 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000177262 3367_ $$00$$2EndNote$$aJournal Article
000177262 500__ $$a2021 Dec;48(12):7673-7684
000177262 520__ $$aAdaptive proton therapy (APT) of lung cancer patients requires frequent volumetric imaging of diagnostic quality. Cone-beam CT (CBCT) can provide these daily images, but x-ray scattering limits CBCT-image quality and hampers dose calculation accuracy. The purpose of this study was to generate CBCT-based synthetic CTs using a deep convolutional neural network (DCNN) and investigate image quality and clinical suitability for proton dose calculations in lung cancer patients.A dataset of 33 thoracic cancer patients, containing CBCTs, same-day repeat CTs (rCT), planning-CTs (pCTs) and clinical proton treatment plans, was used to train and evaluate a DCNN with and without a pCT-based correction method. Mean absolute error (MAE), mean error (ME), peak signal-to-noise ratio and structural similarity were used to quantify image quality. The evaluation of clinical suitability was based on recalculation of clinical proton treatment plans. Gamma pass ratios, mean dose to target volumes and organs at risk, and normal tissue complication probabilities (NTCP) were calculated. Furthermore, proton radiography simulations were performed to assess the HU-accuracy of sCTs in terms of range errors.On average, sCTs without correction resulted in a MAE of 34±6 HU and ME of 4±8 HU. The correction reduced the MAE to 31±4HU (ME to 2±4HU). Average 3%/3mm gamma pass ratios increased from 93.7% to 96.8%, when the correction was applied. The patient specific correction reduced mean proton range errors from 1.5 to 1.1 mm. Relative mean target dose differences between sCTs and rCT were below ±0.5% for all patients and both synthetic CTs (with/without correction). NTCP values showed high agreement between sCTs and rCT (<2%).CBCT-based sCTs can enable accurate proton dose calculations for APT of lung cancer patients. The patient specific correction method increased the image quality and dosimetric accuracy but had only a limited influence on clinically relevant parameters. This article is protected by copyright. All rights reserved.
000177262 536__ $$0G:(DE-HGF)POF4-315$$a315 - Bildgebung und Radioonkologie (POF4-315)$$cPOF4-315$$fPOF IV$$x0
000177262 588__ $$aDataset connected to CrossRef, PubMed, , Journals: inrepo01.inet.dkfz-heidelberg.de
000177262 650_7 $$2Other$$aCBCT
000177262 650_7 $$2Other$$aDeep learning
000177262 650_7 $$2Other$$aadaptive proton therapy
000177262 650_7 $$2Other$$alung cancer
000177262 650_7 $$2Other$$asynthetic CT
000177262 7001_ $$aOria, Carmen Seller$$b1
000177262 7001_ $$aZaffino, Paolo$$b2
000177262 7001_ $$aMeijers, Arturs$$b3
000177262 7001_ $$aMarmitt, Gabriel Guterres$$b4
000177262 7001_ $$aWijsman, Robin$$b5
000177262 7001_ $$0P:(DE-He78)102624aca75cfe987c05343d5fdcf2fe$$aSeco, Joao$$b6$$udkfz
000177262 7001_ $$aLangendijk, Johannes Albertus$$b7
000177262 7001_ $$aKnopf, Antje-Christin$$b8
000177262 7001_ $$aSpadea, Maria Francesca$$b9
000177262 7001_ $$aBoth, Stefan$$b10
000177262 773__ $$0PERI:(DE-600)1466421-5$$a10.1002/mp.15333$$gp. mp.15333$$n12$$p7673-7684$$tMedical physics$$v48$$x2473-4209$$y2021
000177262 909CO $$ooai:inrepo02.dkfz.de:177262$$pVDB
000177262 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)102624aca75cfe987c05343d5fdcf2fe$$aDeutsches Krebsforschungszentrum$$b6$$kDKFZ
000177262 9131_ $$0G:(DE-HGF)POF4-315$$1G:(DE-HGF)POF4-310$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vBildgebung und Radioonkologie$$x0
000177262 9141_ $$y2021
000177262 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2021-02-02$$wger
000177262 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-02-02
000177262 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2021-02-02
000177262 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-02-02
000177262 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2021-02-02
000177262 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-02
000177262 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine$$d2021-02-02
000177262 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-02
000177262 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-02-02
000177262 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bMED PHYS : 2019$$d2021-02-02
000177262 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-02-02
000177262 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-02-02
000177262 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-02-02
000177262 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-02-02
000177262 9201_ $$0I:(DE-He78)E041-20160331$$kE041$$lE041 Medizinische Physik in der Radioonkologie$$x0
000177262 980__ $$ajournal
000177262 980__ $$aVDB
000177262 980__ $$aI:(DE-He78)E041-20160331
000177262 980__ $$aUNRESTRICTED