001     177262
005     20240229133735.0
024 7 _ |a 10.1002/mp.15333
|2 doi
024 7 _ |a pmid:34725829
|2 pmid
024 7 _ |a 0094-2405
|2 ISSN
024 7 _ |a 1522-8541
|2 ISSN
024 7 _ |a 2473-4209
|2 ISSN
024 7 _ |a altmetric:116143650
|2 altmetric
037 _ _ |a DKFZ-2021-02395
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Thummerer, Adrian
|b 0
245 _ _ |a Clinical suitability of deep learning based synthetic CTs for adaptive proton therapy of lung cancer.
260 _ _ |a College Park, Md.
|c 2021
|b AAPM
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1642511132_14848
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a 2021 Dec;48(12):7673-7684
520 _ _ |a Adaptive proton therapy (APT) of lung cancer patients requires frequent volumetric imaging of diagnostic quality. Cone-beam CT (CBCT) can provide these daily images, but x-ray scattering limits CBCT-image quality and hampers dose calculation accuracy. The purpose of this study was to generate CBCT-based synthetic CTs using a deep convolutional neural network (DCNN) and investigate image quality and clinical suitability for proton dose calculations in lung cancer patients.A dataset of 33 thoracic cancer patients, containing CBCTs, same-day repeat CTs (rCT), planning-CTs (pCTs) and clinical proton treatment plans, was used to train and evaluate a DCNN with and without a pCT-based correction method. Mean absolute error (MAE), mean error (ME), peak signal-to-noise ratio and structural similarity were used to quantify image quality. The evaluation of clinical suitability was based on recalculation of clinical proton treatment plans. Gamma pass ratios, mean dose to target volumes and organs at risk, and normal tissue complication probabilities (NTCP) were calculated. Furthermore, proton radiography simulations were performed to assess the HU-accuracy of sCTs in terms of range errors.On average, sCTs without correction resulted in a MAE of 34±6 HU and ME of 4±8 HU. The correction reduced the MAE to 31±4HU (ME to 2±4HU). Average 3%/3mm gamma pass ratios increased from 93.7% to 96.8%, when the correction was applied. The patient specific correction reduced mean proton range errors from 1.5 to 1.1 mm. Relative mean target dose differences between sCTs and rCT were below ±0.5% for all patients and both synthetic CTs (with/without correction). NTCP values showed high agreement between sCTs and rCT (<2%).CBCT-based sCTs can enable accurate proton dose calculations for APT of lung cancer patients. The patient specific correction method increased the image quality and dosimetric accuracy but had only a limited influence on clinically relevant parameters. This article is protected by copyright. All rights reserved.
536 _ _ |a 315 - Bildgebung und Radioonkologie (POF4-315)
|0 G:(DE-HGF)POF4-315
|c POF4-315
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo01.inet.dkfz-heidelberg.de
650 _ 7 |a CBCT
|2 Other
650 _ 7 |a Deep learning
|2 Other
650 _ 7 |a adaptive proton therapy
|2 Other
650 _ 7 |a lung cancer
|2 Other
650 _ 7 |a synthetic CT
|2 Other
700 1 _ |a Oria, Carmen Seller
|b 1
700 1 _ |a Zaffino, Paolo
|b 2
700 1 _ |a Meijers, Arturs
|b 3
700 1 _ |a Marmitt, Gabriel Guterres
|b 4
700 1 _ |a Wijsman, Robin
|b 5
700 1 _ |a Seco, Joao
|0 P:(DE-He78)102624aca75cfe987c05343d5fdcf2fe
|b 6
|u dkfz
700 1 _ |a Langendijk, Johannes Albertus
|b 7
700 1 _ |a Knopf, Antje-Christin
|b 8
700 1 _ |a Spadea, Maria Francesca
|b 9
700 1 _ |a Both, Stefan
|b 10
773 _ _ |a 10.1002/mp.15333
|g p. mp.15333
|0 PERI:(DE-600)1466421-5
|n 12
|p 7673-7684
|t Medical physics
|v 48
|y 2021
|x 2473-4209
909 C O |p VDB
|o oai:inrepo02.dkfz.de:177262
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 6
|6 P:(DE-He78)102624aca75cfe987c05343d5fdcf2fe
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-315
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Bildgebung und Radioonkologie
|x 0
914 1 _ |y 2021
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2021-02-02
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
|d 2021-02-02
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-02-02
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b MED PHYS : 2019
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2021-02-02
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2021-02-02
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2021-02-02
920 1 _ |0 I:(DE-He78)E041-20160331
|k E041
|l E041 Medizinische Physik in der Radioonkologie
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)E041-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21