000177380 001__ 177380
000177380 005__ 20240229133738.0
000177380 0247_ $$2doi$$a10.1371/journal.pcbi.1009562
000177380 0247_ $$2pmid$$apmid:34762643
000177380 0247_ $$2ISSN$$a1553-734X
000177380 0247_ $$2ISSN$$a1553-7358
000177380 0247_ $$2altmetric$$aaltmetric:116682676
000177380 037__ $$aDKFZ-2021-02472
000177380 041__ $$aEnglish
000177380 082__ $$a610
000177380 1001_ $$aBarenboim, Maxim$$b0
000177380 245__ $$aDNA methylation-based classifier and gene expression signatures detect BRCAness in osteosarcoma.
000177380 260__ $$aSan Francisco, Calif.$$bPublic Library of Science$$c2021
000177380 3367_ $$2DRIVER$$aarticle
000177380 3367_ $$2DataCite$$aOutput Types/Journal article
000177380 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1637076482_26019
000177380 3367_ $$2BibTeX$$aARTICLE
000177380 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000177380 3367_ $$00$$2EndNote$$aJournal Article
000177380 520__ $$aAlthough osteosarcoma (OS) is a rare cancer, it is the most common primary malignant bone tumor in children and adolescents. BRCAness is a phenotypical trait in tumors with a defect in homologous recombination repair, resembling tumors with inactivation of BRCA1/2, rendering these tumors sensitive to poly (ADP)-ribose polymerase inhibitors (PARPi). Recently, OS was shown to exhibit molecular features of BRCAness. Our goal was to develop a method complementing existing genomic methods to aid clinical decision making on administering PARPi in OS patients. OS samples with DNA-methylation data were divided to BRCAness-positive and negative groups based on the degree of their genomic instability (n = 41). Methylation probes were ranked according to decreasing variance difference between two groups. The top 2000 probes were selected for training and cross-validation of the random forest algorithm. Two-thirds of available OS RNA-Seq samples (n = 17) from the top and bottom of the sample list ranked according to genome instability score were subjected to differential expression and, subsequently, to gene set enrichment analysis (GSEA). The combined accuracy of trained random forest was 85% and the average area under the ROC curve (AUC) was 0.95. There were 449 upregulated and 1,079 downregulated genes in the BRCAness-positive group (fdr < 0.05). GSEA of upregulated genes detected enrichment of DNA replication and mismatch repair and homologous recombination signatures (FWER < 0.05). Validation of the BRCAness classifier with an independent OS set (n = 20) collected later in the course of study showed AUC of 0.87 with an accuracy of 90%. GSEA signatures computed for this test set were matching the ones observed in the training set enrichment analysis. In conclusion, we developed a new classifier based on DNA-methylation patterns that detects BRCAness in OS samples with high accuracy. GSEA identified genome instability signatures. Machine-learning and gene expression approaches add new epigenomic and transcriptomic aspects to already established genomic methods for evaluation of BRCAness in osteosarcoma and can be extended to cancers characterized by genome instability.
000177380 536__ $$0G:(DE-HGF)POF4-312$$a312 - Funktionelle und strukturelle Genomforschung (POF4-312)$$cPOF4-312$$fPOF IV$$x0
000177380 588__ $$aDataset connected to CrossRef, PubMed, , Journals: inrepo01.inet.dkfz-heidelberg.de
000177380 7001_ $$aKovac, Michal$$b1
000177380 7001_ $$00000-0001-5913-7413$$aAmeline, Baptiste$$b2
000177380 7001_ $$0P:(DE-He78)551bb92841f634070997aa168d818492$$aJones, David T W$$b3$$udkfz
000177380 7001_ $$0P:(DE-He78)143af26de9d57bf624771616318aaf7c$$aWitt, Olaf$$b4$$udkfz
000177380 7001_ $$aBielack, Stefan$$b5
000177380 7001_ $$0P:(DE-HGF)0$$aBurdach, Stefan$$b6
000177380 7001_ $$00000-0002-2137-7507$$aBaumhoer, Daniel$$b7
000177380 7001_ $$aNathrath, Michaela$$b8
000177380 773__ $$0PERI:(DE-600)2193340-6$$a10.1371/journal.pcbi.1009562$$gVol. 17, no. 11, p. e1009562 -$$n11$$pe1009562 -$$tPLoS Computational Biology$$v17$$x1553-7358$$y2021
000177380 909CO $$ooai:inrepo02.dkfz.de:177380$$pVDB
000177380 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)551bb92841f634070997aa168d818492$$aDeutsches Krebsforschungszentrum$$b3$$kDKFZ
000177380 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)143af26de9d57bf624771616318aaf7c$$aDeutsches Krebsforschungszentrum$$b4$$kDKFZ
000177380 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-HGF)0$$aDeutsches Krebsforschungszentrum$$b6$$kDKFZ
000177380 9131_ $$0G:(DE-HGF)POF4-312$$1G:(DE-HGF)POF4-310$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vFunktionelle und strukturelle Genomforschung$$x0
000177380 9141_ $$y2021
000177380 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-27
000177380 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-27
000177380 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2021-01-27
000177380 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2021-01-27
000177380 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2021-01-27
000177380 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Peer review$$d2021-01-27
000177380 915__ $$0LIC:(DE-HGF)CCBYNV$$2V:(DE-HGF)$$aCreative Commons Attribution CC BY (No Version)$$bDOAJ$$d2021-01-27
000177380 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-27
000177380 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-27
000177380 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2021-01-27
000177380 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2021-01-27
000177380 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-27
000177380 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-27
000177380 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPLOS COMPUT BIOL : 2019$$d2021-01-27
000177380 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-01-27
000177380 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-01-27
000177380 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-01-27
000177380 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2021-01-27
000177380 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2021-01-27
000177380 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2021-01-27
000177380 9201_ $$0I:(DE-He78)B360-20160331$$kB360$$lPediatric Glioma$$x0
000177380 9201_ $$0I:(DE-He78)B310-20160331$$kB310$$lKKE Pädiatrische Onkologie$$x1
000177380 9201_ $$0I:(DE-He78)MU01-20160331$$kMU01$$lDKTK MU LMU zentral$$x2
000177380 980__ $$ajournal
000177380 980__ $$aVDB
000177380 980__ $$aI:(DE-He78)B360-20160331
000177380 980__ $$aI:(DE-He78)B310-20160331
000177380 980__ $$aI:(DE-He78)MU01-20160331
000177380 980__ $$aUNRESTRICTED