001     177457
005     20240229133741.0
024 7 _ |a 10.1016/j.trsl.2021.11.004
|2 doi
024 7 _ |a pmid:34780968
|2 pmid
024 7 _ |a 0022-2143
|2 ISSN
024 7 _ |a 1532-6543
|2 ISSN
024 7 _ |a 1878-1810
|2 ISSN
024 7 _ |a 1931-5244
|2 ISSN
024 7 _ |a altmetric:116967509
|2 altmetric
037 _ _ |a DKFZ-2021-02549
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Rodriguez, Mariana Ponce de Leon
|b 0
245 _ _ |a Novel associations between inflammation-related proteins and adiposity: a targeted proteomics approach across four population-based studies.
260 _ _ |a New York, NY
|c 2022
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1646136589_20517
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a Volume 242, April 2022, Pages 93-104
520 _ _ |a Chronic low-grade inflammation has been proposed as a linking mechanism between obesity and the development of inflammation-related conditions such as insulin resistance and cardiovascular disease. Despite major advances in the last two decades, the complex interplay between immune regulators and obesity remains poorly understood. Therefore, we aimed to identify novel inflammation-related proteins associated with adiposity. We investigated the association between BMI and waist circumference and 72 circulating inflammation-related proteins, measured using the Proximity Extension Assay (Olink Proteomics), in 3,308 participants of four independent European population-based studies (KORA-Fit, BVSII, ESTHER, and Bialystok PLUS). In addition, we used body fat mass measurements obtained by Dual-energy X-ray absorptiometry (DXA) in the Bialystok PLUS study to further validate our results and to explore the relationship between inflammation-related proteins and body fat distribution. We found 14 proteins associated with at least one measure of adiposity across all four studies, including four proteins for which the association is novel: DNER, SLAMF1, RANKL, and CSF-1. We confirmed previously reported associations with CCL19, CCL28, FGF-21, HGF, IL-10RB, IL-18, IL-18R1, IL-6, SCF, and VEGF-A. The majority of the identified inflammation-related proteins were associated with visceral fat as well as with the accumulation of adipose tissue in the abdomen and the trunk. In conclusion, our study provides new insights into the immune dysregulation observed in obesity that might help uncover pathophysiological mechanisms of disease development.
536 _ _ |a 313 - Krebsrisikofaktoren und Prävention (POF4-313)
|0 G:(DE-HGF)POF4-313
|c POF4-313
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo01.inet.dkfz-heidelberg.de
700 1 _ |a Linseisen, Jakob
|b 1
700 1 _ |a Peters, Annette
|b 2
700 1 _ |a Linkohr, Birgit
|b 3
700 1 _ |a Heier, Margit
|b 4
700 1 _ |a Grallert, Harald
|b 5
700 1 _ |a Schöttker, Ben
|0 P:(DE-He78)c67a12496b8aac150c0eef888d808d46
|b 6
|u dkfz
700 1 _ |a Trares, Kira
|0 P:(DE-He78)b09508a4c4afe85c57dd131eefa689ea
|b 7
|u dkfz
700 1 _ |a Bhardwaj, Megha
|0 P:(DE-He78)ac7aed57f26354e8a484b5d257f7bada
|b 8
|u dkfz
700 1 _ |a Gào, Xīn
|0 P:(DE-He78)8218df9f6f41792399cd3a29b587e4e7
|b 9
|u dkfz
700 1 _ |a Brenner, Herman
|0 P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2
|b 10
|u dkfz
700 1 _ |a Kamiński, Karol Adam
|b 11
700 1 _ |a Paniczko, Marlena
|b 12
700 1 _ |a Kowalska, Irina
|b 13
700 1 _ |a Baumeister, Sebastian-Edgar
|b 14
700 1 _ |a Meisinger, Christa
|b 15
773 _ _ |a 10.1016/j.trsl.2021.11.004
|g p. S193152442100267X
|0 PERI:(DE-600)2252085-5
|p 93-104
|t Translational research
|v 242
|y 2022
|x 1931-5244
909 C O |p VDB
|o oai:inrepo02.dkfz.de:177457
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 6
|6 P:(DE-He78)c67a12496b8aac150c0eef888d808d46
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 7
|6 P:(DE-He78)b09508a4c4afe85c57dd131eefa689ea
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 8
|6 P:(DE-He78)ac7aed57f26354e8a484b5d257f7bada
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 9
|6 P:(DE-He78)8218df9f6f41792399cd3a29b587e4e7
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 10
|6 P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-313
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Krebsrisikofaktoren und Prävention
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-02-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2021-02-03
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-02-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2022-11-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
|d 2022-11-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2022-11-11
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b TRANSL RES : 2021
|d 2022-11-11
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-11
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b TRANSL RES : 2021
|d 2022-11-11
920 1 _ |0 I:(DE-He78)C070-20160331
|k C070
|l C070 Klinische Epidemiologie und Alternf.
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)C070-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21