000177477 001__ 177477
000177477 005__ 20240320154229.0
000177477 0247_ $$2doi$$a10.1038/s41467-019-13885-w
000177477 0247_ $$2pmid$$apmid:32024823
000177477 0247_ $$2pmc$$apmc:PMC7002524
000177477 0247_ $$2altmetric$$aaltmetric:75084795
000177477 037__ $$aDKFZ-2021-02564
000177477 041__ $$aEnglish
000177477 082__ $$a500
000177477 1001_ $$aZhang, Yiqun$$b0
000177477 245__ $$aHigh-coverage whole-genome analysis of 1220 cancers reveals hundreds of genes deregulated by rearrangement-mediated cis-regulatory alterations.
000177477 260__ $$a[London]$$bNature Publishing Group UK$$c2020
000177477 3367_ $$2DRIVER$$aarticle
000177477 3367_ $$2DataCite$$aOutput Types/Journal article
000177477 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1710945699_16618
000177477 3367_ $$2BibTeX$$aARTICLE
000177477 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000177477 3367_ $$00$$2EndNote$$aJournal Article
000177477 500__ $$asiehe Correction: DKFZ Autoren affiliiert im PCAWG Consortium: https://inrepo02.dkfz.de/record/212439 /https://doi.org/10.1038/s41467-022-32333-w
000177477 520__ $$aThe impact of somatic structural variants (SVs) on gene expression in cancer is largely unknown. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, which aggregated whole-genome sequencing data and RNA sequencing from a common set of 1220 cancer cases, we report hundreds of genes for which the presence within 100 kb of an SV breakpoint associates with altered expression. For the majority of these genes, expression increases rather than decreases with corresponding breakpoint events. Up-regulated cancer-associated genes impacted by this phenomenon include TERT, MDM2, CDK4, ERBB2, CD274, PDCD1LG2, and IGF2. TERT-associated breakpoints involve ~3% of cases, most frequently in liver biliary, melanoma, sarcoma, stomach, and kidney cancers. SVs associated with up-regulation of PD1 and PDL1 genes involve ~1% of non-amplified cases. For many genes, SVs are significantly associated with increased numbers or greater proximity of enhancer regulatory elements near the gene. DNA methylation near the promoter is often increased with nearby SV breakpoint, which may involve inactivation of repressor elements.
000177477 536__ $$0G:(DE-HGF)POF3-312$$a312 - Functional and structural genomics (POF3-312)$$cPOF3-312$$fPOF III$$x0
000177477 588__ $$aDataset connected to CrossRef, PubMed, , Journals: inrepo01.inet.dkfz-heidelberg.de
000177477 650_2 $$2MeSH$$aDNA Methylation
000177477 650_2 $$2MeSH$$aDatabases, Genetic
000177477 650_2 $$2MeSH$$aEnhancer Elements, Genetic
000177477 650_2 $$2MeSH$$aGene Expression Regulation, Neoplastic
000177477 650_2 $$2MeSH$$aGenes, Tumor Suppressor
000177477 650_2 $$2MeSH$$aGenomic Structural Variation
000177477 650_2 $$2MeSH$$aHumans
000177477 650_2 $$2MeSH$$aNeoplasms: genetics
000177477 650_2 $$2MeSH$$aOncogenes
000177477 650_2 $$2MeSH$$aRegulatory Sequences, Nucleic Acid
000177477 650_2 $$2MeSH$$aWhole Genome Sequencing
000177477 7001_ $$aChen, Fengju$$b1
000177477 7001_ $$aFonseca, Nuno A$$b2
000177477 7001_ $$aHe, Yao$$b3
000177477 7001_ $$aFujita, Masashi$$b4
000177477 7001_ $$aNakagawa, Hidewaki$$b5
000177477 7001_ $$aZhang, Zemin$$b6
000177477 7001_ $$aBrazma, Alvis$$b7
000177477 7001_ $$aPCAWGTranscriptomeWorkingGroup$$b8
000177477 7001_ $$aPCAWGStructuralVariationWorkingGroup$$b9
000177477 7001_ $$aCreighton, Chad J$$b10
000177477 7001_ $$aPCAWGConsortium$$b11
000177477 773__ $$0PERI:(DE-600)2553671-0$$a10.1038/s41467-019-13885-w$$gVol. 11, no. 1, p. 736$$n1$$p736$$tNature Communications$$v11$$x2041-1723$$y2020
000177477 909CO $$ooai:inrepo02.dkfz.de:177477$$pVDB
000177477 9131_ $$0G:(DE-HGF)POF3-312$$1G:(DE-HGF)POF3-310$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vFunctional and structural genomics$$x0
000177477 9141_ $$y2020
000177477 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNAT COMMUN : 2019$$d2021-02-02
000177477 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-02-02
000177477 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-02-02
000177477 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2021-02-02
000177477 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2021-02-02
000177477 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2021-02-02
000177477 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Peer review$$d2021-02-02
000177477 915__ $$0LIC:(DE-HGF)CCBYNV$$2V:(DE-HGF)$$aCreative Commons Attribution CC BY (No Version)$$bDOAJ$$d2021-02-02
000177477 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-02-02
000177477 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2021-02-02
000177477 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-02
000177477 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2021-02-02
000177477 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-02-02
000177477 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences$$d2021-02-02
000177477 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record$$d2021-02-02
000177477 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2021-02-02
000177477 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-02
000177477 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-02-02
000177477 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bNAT COMMUN : 2019$$d2021-02-02
000177477 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2021-02-02
000177477 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2021-02-02
000177477 9201_ $$0I:(DE-He78)B080-20160331$$kB080$$lTheoretische Bioinformatik$$x0
000177477 9201_ $$0I:(DE-He78)B240-20160331$$kB240$$lBioinformatik und Omics Data Analytics$$x1
000177477 9201_ $$0I:(DE-He78)B370-20160331$$kB370$$lEpigenomik$$x2
000177477 9201_ $$0I:(DE-He78)B330-20160331$$kB330$$lAngewandte Bioinformatik$$x3
000177477 9201_ $$0I:(DE-He78)HD01-20160331$$kHD01$$lDKTK HD zentral$$x4
000177477 9201_ $$0I:(DE-He78)B060-20160331$$kB060$$lB060 Molekulare Genetik$$x5
000177477 9201_ $$0I:(DE-He78)B360-20160331$$kB360$$lPädiatrische Gliomforschung$$x6
000177477 9201_ $$0I:(DE-He78)BE01-20160331$$kBE01$$lDKTK Koordinierungsstelle Berlin$$x7
000177477 9201_ $$0I:(DE-He78)B062-20160331$$kB062$$lB062 Pädiatrische Neuroonkologie$$x8
000177477 9201_ $$0I:(DE-He78)B066-20160331$$kB066$$lB066 Chromatin-Netzwerke$$x9
000177477 9201_ $$0I:(DE-He78)B063-20160331$$kB063$$lB063 Krebsgenomforschung$$x10
000177477 9201_ $$0I:(DE-He78)W190-20160331$$kW190$$lHochdurchsatz-Sequenzierung$$x11
000177477 9201_ $$0I:(DE-He78)B260-20160331$$kB260$$lB260 Bioinformatik der Genomik und Systemgenetik$$x12
000177477 9201_ $$0I:(DE-He78)W610-20160331$$kW610$$lCore Facility Omics IT$$x13
000177477 9201_ $$0I:(DE-He78)B087-20160331$$kB087$$lB087 Neuroblastom Genomik$$x14
000177477 980__ $$ajournal
000177477 980__ $$aVDB
000177477 980__ $$aI:(DE-He78)B080-20160331
000177477 980__ $$aI:(DE-He78)B240-20160331
000177477 980__ $$aI:(DE-He78)B370-20160331
000177477 980__ $$aI:(DE-He78)B330-20160331
000177477 980__ $$aI:(DE-He78)HD01-20160331
000177477 980__ $$aI:(DE-He78)B060-20160331
000177477 980__ $$aI:(DE-He78)B360-20160331
000177477 980__ $$aI:(DE-He78)BE01-20160331
000177477 980__ $$aI:(DE-He78)B062-20160331
000177477 980__ $$aI:(DE-He78)B066-20160331
000177477 980__ $$aI:(DE-He78)B063-20160331
000177477 980__ $$aI:(DE-He78)W190-20160331
000177477 980__ $$aI:(DE-He78)B260-20160331
000177477 980__ $$aI:(DE-He78)W610-20160331
000177477 980__ $$aI:(DE-He78)B087-20160331
000177477 980__ $$aUNRESTRICTED