001     177478
005     20240320145808.0
024 7 _ |a 10.1038/s41586-020-1943-3
|2 doi
024 7 _ |a pmid:32025018
|2 pmid
024 7 _ |a pmc:PMC7054213
|2 pmc
024 7 _ |a 0028-0836
|2 ISSN
024 7 _ |a 1476-4687
|2 ISSN
024 7 _ |a altmetric:75074078
|2 altmetric
037 _ _ |a DKFZ-2021-02565
041 _ _ |a English
082 _ _ |a 500
100 1 _ |a Alexandrov, Ludmil B
|b 0
245 _ _ |a The repertoire of mutational signatures in human cancer.
260 _ _ |a London [u.a.]
|c 2020
|b Nature Publ. Group
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1710943033_32161
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a siehe Correction: DKFZ Autoren affiliiert im PCAWG Consortium;https://inrepo02.dkfz.de/record/265690 / https://doi.org/10.1038/s41586-022-05600-5
520 _ _ |a Somatic mutations in cancer genomes are caused by multiple mutational processes, each of which generates a characteristic mutational signature1. Here, as part of the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium2 of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA), we characterized mutational signatures using 84,729,690 somatic mutations from 4,645 whole-genome and 19,184 exome sequences that encompass most types of cancer. We identified 49 single-base-substitution, 11 doublet-base-substitution, 4 clustered-base-substitution and 17 small insertion-and-deletion signatures. The substantial size of our dataset, compared with previous analyses3-15, enabled the discovery of new signatures, the separation of overlapping signatures and the decomposition of signatures into components that may represent associated-but distinct-DNA damage, repair and/or replication mechanisms. By estimating the contribution of each signature to the mutational catalogues of individual cancer genomes, we revealed associations of signatures to exogenous or endogenous exposures, as well as to defective DNA-maintenance processes. However, many signatures are of unknown cause. This analysis provides a systematic perspective on the repertoire of mutational processes that contribute to the development of human cancer.
536 _ _ |a 312 - Functional and structural genomics (POF3-312)
|0 G:(DE-HGF)POF3-312
|c POF3-312
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo01.inet.dkfz-heidelberg.de
650 _ 2 |a Age Factors
|2 MeSH
650 _ 2 |a Base Sequence
|2 MeSH
650 _ 2 |a Exome: genetics
|2 MeSH
650 _ 2 |a Genome, Human: genetics
|2 MeSH
650 _ 2 |a Humans
|2 MeSH
650 _ 2 |a Mutation: genetics
|2 MeSH
650 _ 2 |a Neoplasms: genetics
|2 MeSH
650 _ 2 |a Sequence Analysis, DNA
|2 MeSH
700 1 _ |a Kim, Jaegil
|b 1
700 1 _ |a Haradhvala, Nicholas J
|b 2
700 1 _ |a Huang, Mi Ni
|b 3
700 1 _ |a Tian Ng, Alvin Wei
|b 4
700 1 _ |a Wu, Yang
|b 5
700 1 _ |a Boot, Arnoud
|b 6
700 1 _ |a Covington, Kyle R
|b 7
700 1 _ |a Gordenin, Dmitry A
|b 8
700 1 _ |a Bergstrom, Erik N
|b 9
700 1 _ |a Islam, S M Ashiqul
|b 10
700 1 _ |a Lopez-Bigas, Nuria
|b 11
700 1 _ |a Klimczak, Leszek J
|b 12
700 1 _ |a McPherson, John R
|b 13
700 1 _ |a Morganella, Sandro
|b 14
700 1 _ |a Sabarinathan, Radhakrishnan
|b 15
700 1 _ |a Wheeler, David A
|b 16
700 1 _ |a Mustonen, Ville
|b 17
700 1 _ |a PCAWGMutationalSignaturesWorkingGroup
|0 P:(DE-HGF)0
|b 18
700 1 _ |a Getz, Gad
|b 19
700 1 _ |a Rozen, Steven G
|b 20
700 1 _ |a Stratton, Michael R
|b 21
700 1 _ |a PCAWGConsortium
|0 P:(DE-HGF)0
|b 22
773 _ _ |a 10.1038/s41586-020-1943-3
|g Vol. 578, no. 7793, p. 94 - 101
|0 PERI:(DE-600)1413423-8
|n 7793
|p 94 - 101
|t Nature
|v 578
|y 2020
|x 1476-4687
909 C O |p VDB
|o oai:inrepo02.dkfz.de:177478
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF3-310
|0 G:(DE-HGF)POF3-312
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-300
|4 G:(DE-HGF)POF
|v Functional and structural genomics
|x 0
914 1 _ |y 2020
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2021-01-27
|w ger
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NATURE : 2019
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2021-01-27
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1200
|2 StatID
|b Chemical Reactions
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1210
|2 StatID
|b Index Chemicus
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2021-01-27
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-01-27
915 _ _ |a IF >= 40
|0 StatID:(DE-HGF)9940
|2 StatID
|b NATURE : 2019
|d 2021-01-27
920 1 _ |0 I:(DE-He78)BE01-20160331
|k BE01
|l DKTK Koordinierungsstelle Berlin
|x 0
920 1 _ |0 I:(DE-He78)B260-20160331
|k B260
|l B260 Bioinformatik der Genomik und Systemgenetik
|x 1
920 1 _ |0 I:(DE-He78)B330-20160331
|k B330
|l Angewandte Bioinformatik
|x 2
920 1 _ |0 I:(DE-He78)HD01-20160331
|k HD01
|l DKTK HD zentral
|x 3
920 1 _ |0 I:(DE-He78)B360-20160331
|k B360
|l Pädiatrische Gliomforschung
|x 4
920 1 _ |0 I:(DE-He78)C010-20160331
|k C010
|l Epigenomik und Krebsrisikofaktoren
|x 5
920 1 _ |0 I:(DE-He78)B080-20160331
|k B080
|l Theoretische Bioinformatik
|x 6
920 1 _ |0 I:(DE-He78)B370-20160331
|k B370
|l Epigenomik
|x 7
920 1 _ |0 I:(DE-He78)B060-20160331
|k B060
|l B060 Molekulare Genetik
|x 8
920 1 _ |0 I:(DE-He78)B062-20160331
|k B062
|l B062 Pädiatrische Neuroonkologie
|x 9
920 1 _ |0 I:(DE-He78)B066-20160331
|k B066
|l B066 Chromatin-Netzwerke
|x 10
920 1 _ |0 I:(DE-He78)W610-20160331
|k W610
|l Core Facility Omics IT
|x 11
920 1 _ |0 I:(DE-He78)B063-20160331
|k B063
|l B063 Krebsgenomforschung
|x 12
920 1 _ |0 I:(DE-He78)B087-20160331
|k B087
|l B087 Neuroblastom Genomik
|x 13
920 1 _ |0 I:(DE-He78)W190-20160331
|k W190
|l Hochdurchsatz-Sequenzierung
|x 14
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)BE01-20160331
980 _ _ |a I:(DE-He78)B260-20160331
980 _ _ |a I:(DE-He78)B330-20160331
980 _ _ |a I:(DE-He78)HD01-20160331
980 _ _ |a I:(DE-He78)B360-20160331
980 _ _ |a I:(DE-He78)C010-20160331
980 _ _ |a I:(DE-He78)B080-20160331
980 _ _ |a I:(DE-He78)B370-20160331
980 _ _ |a I:(DE-He78)B060-20160331
980 _ _ |a I:(DE-He78)B062-20160331
980 _ _ |a I:(DE-He78)B066-20160331
980 _ _ |a I:(DE-He78)W610-20160331
980 _ _ |a I:(DE-He78)B063-20160331
980 _ _ |a I:(DE-He78)B087-20160331
980 _ _ |a I:(DE-He78)W190-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21