001     177480
005     20240320153721.0
024 7 _ |a 10.1038/s41467-019-13983-9
|2 doi
024 7 _ |a pmid:32024846
|2 pmid
024 7 _ |a pmc:PMC7002665
|2 pmc
024 7 _ |a altmetric:75078184
|2 altmetric
037 _ _ |a DKFZ-2021-02567
041 _ _ |a English
082 _ _ |a 500
100 1 _ |a Paczkowska, Marta
|b 0
245 _ _ |a Integrative pathway enrichment analysis of multivariate omics data.
260 _ _ |a [London]
|c 2020
|b Nature Publishing Group UK
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1710945340_17309
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a siehe Correction: DKFZ Autoren affiliiert im PCAWG Consortium: https://inrepo02.dkfz.de/record/212438 / https://doi.org/10.1038/s41467-022-32342-9
520 _ _ |a Multi-omics datasets represent distinct aspects of the central dogma of molecular biology. Such high-dimensional molecular profiles pose challenges to data interpretation and hypothesis generation. ActivePathways is an integrative method that discovers significantly enriched pathways across multiple datasets using statistical data fusion, rationalizes contributing evidence and highlights associated genes. As part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, which aggregated whole genome sequencing data from 2658 cancers across 38 tumor types, we integrated genes with coding and non-coding mutations and revealed frequently mutated pathways and additional cancer genes with infrequent mutations. We also analyzed prognostic molecular pathways by integrating genomic and transcriptomic features of 1780 breast cancers and highlighted associations with immune response and anti-apoptotic signaling. Integration of ChIP-seq and RNA-seq data for master regulators of the Hippo pathway across normal human tissues identified processes of tissue regeneration and stem cell regulation. ActivePathways is a versatile method that improves systems-level understanding of cellular organization in health and disease through integration of multiple molecular datasets and pathway annotations.
536 _ _ |a 312 - Functional and structural genomics (POF3-312)
|0 G:(DE-HGF)POF3-312
|c POF3-312
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo01.inet.dkfz-heidelberg.de
650 _ 7 |a RNA, Messenger
|2 NLM Chemicals
650 _ 7 |a Hippo protein, human
|0 EC 2.7.11.1
|2 NLM Chemicals
650 _ 7 |a Protein-Serine-Threonine Kinases
|0 EC 2.7.11.1
|2 NLM Chemicals
650 _ 2 |a Adenocarcinoma: genetics
|2 MeSH
650 _ 2 |a Adenocarcinoma: metabolism
|2 MeSH
650 _ 2 |a Apoptosis: genetics
|2 MeSH
650 _ 2 |a Breast Neoplasms: genetics
|2 MeSH
650 _ 2 |a Breast Neoplasms: immunology
|2 MeSH
650 _ 2 |a Breast Neoplasms: metabolism
|2 MeSH
650 _ 2 |a Breast Neoplasms: mortality
|2 MeSH
650 _ 2 |a Chromatin Immunoprecipitation
|2 MeSH
650 _ 2 |a Computational Biology: methods
|2 MeSH
650 _ 2 |a Databases, Factual
|2 MeSH
650 _ 2 |a Female
|2 MeSH
650 _ 2 |a Gene Dosage
|2 MeSH
650 _ 2 |a Gene Expression Profiling
|2 MeSH
650 _ 2 |a Gene Regulatory Networks
|2 MeSH
650 _ 2 |a Genomics: methods
|2 MeSH
650 _ 2 |a Humans
|2 MeSH
650 _ 2 |a Metabolic Networks and Pathways: genetics
|2 MeSH
650 _ 2 |a Mutation
|2 MeSH
650 _ 2 |a Neoplasms: genetics
|2 MeSH
650 _ 2 |a Neoplasms: metabolism
|2 MeSH
650 _ 2 |a Prognosis
|2 MeSH
650 _ 2 |a Protein-Serine-Threonine Kinases: genetics
|2 MeSH
650 _ 2 |a Protein-Serine-Threonine Kinases: metabolism
|2 MeSH
650 _ 2 |a RNA, Messenger: genetics
|2 MeSH
650 _ 2 |a Sequence Analysis, RNA
|2 MeSH
650 _ 2 |a Signal Transduction
|2 MeSH
700 1 _ |a Barenboim, Jonathan
|b 1
700 1 _ |a Sintupisut, Nardnisa
|b 2
700 1 _ |a Fox, Natalie S
|b 3
700 1 _ |a Zhu, Helen
|b 4
700 1 _ |a Abd-Rabbo, Diala
|b 5
700 1 _ |a Mee, Miles W
|b 6
700 1 _ |a Boutros, Paul C
|b 7
700 1 _ |a Drivers, PCAWG
|b 8
700 1 _ |a FunctionalInterpretationWorkingGroup
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Reimand, Jüri
|b 10
700 1 _ |a PCAWGConsortium
|0 P:(DE-HGF)0
|b 11
773 _ _ |a 10.1038/s41467-019-13983-9
|g Vol. 11, no. 1, p. 735
|0 PERI:(DE-600)2553671-0
|n 1
|p 735
|t Nature Communications
|v 11
|y 2020
|x 2041-1723
909 C O |p VDB
|o oai:inrepo02.dkfz.de:177480
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF3-310
|0 G:(DE-HGF)POF3-312
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-300
|4 G:(DE-HGF)POF
|v Functional and structural genomics
|x 0
914 1 _ |y 2020
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NAT COMMUN : 2019
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2021-02-02
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Peer review
|d 2021-02-02
915 _ _ |a Creative Commons Attribution CC BY (No Version)
|0 LIC:(DE-HGF)CCBYNV
|2 V:(DE-HGF)
|b DOAJ
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2021-02-02
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-02-02
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b NAT COMMUN : 2019
|d 2021-02-02
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2021-02-02
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2021-02-02
920 1 _ |0 I:(DE-He78)B080-20160331
|k B080
|l Theoretische Bioinformatik
|x 0
920 1 _ |0 I:(DE-He78)B240-20160331
|k B240
|l Bioinformatik und Omics Data Analytics
|x 1
920 1 _ |0 I:(DE-He78)B370-20160331
|k B370
|l Epigenomik
|x 2
920 1 _ |0 I:(DE-He78)B330-20160331
|k B330
|l Angewandte Bioinformatik
|x 3
920 1 _ |0 I:(DE-He78)HD01-20160331
|k HD01
|l DKTK HD zentral
|x 4
920 1 _ |0 I:(DE-He78)B060-20160331
|k B060
|l B060 Molekulare Genetik
|x 5
920 1 _ |0 I:(DE-He78)B360-20160331
|k B360
|l Pädiatrische Gliomforschung
|x 6
920 1 _ |0 I:(DE-He78)BE01-20160331
|k BE01
|l DKTK Koordinierungsstelle Berlin
|x 7
920 1 _ |0 I:(DE-He78)B062-20160331
|k B062
|l B062 Pädiatrische Neuroonkologie
|x 8
920 1 _ |0 I:(DE-He78)B066-20160331
|k B066
|l B066 Chromatin-Netzwerke
|x 9
920 1 _ |0 I:(DE-He78)B063-20160331
|k B063
|l B063 Krebsgenomforschung
|x 10
920 1 _ |0 I:(DE-He78)W190-20160331
|k W190
|l Hochdurchsatz-Sequenzierung
|x 11
920 1 _ |0 I:(DE-He78)B260-20160331
|k B260
|l B260 Bioinformatik der Genomik und Systemgenetik
|x 12
920 1 _ |0 I:(DE-He78)W610-20160331
|k W610
|l Core Facility Omics IT
|x 13
920 1 _ |0 I:(DE-He78)B087-20160331
|k B087
|l B087 Neuroblastom Genomik
|x 14
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)B080-20160331
980 _ _ |a I:(DE-He78)B240-20160331
980 _ _ |a I:(DE-He78)B370-20160331
980 _ _ |a I:(DE-He78)B330-20160331
980 _ _ |a I:(DE-He78)HD01-20160331
980 _ _ |a I:(DE-He78)B060-20160331
980 _ _ |a I:(DE-He78)B360-20160331
980 _ _ |a I:(DE-He78)BE01-20160331
980 _ _ |a I:(DE-He78)B062-20160331
980 _ _ |a I:(DE-He78)B066-20160331
980 _ _ |a I:(DE-He78)B063-20160331
980 _ _ |a I:(DE-He78)W190-20160331
980 _ _ |a I:(DE-He78)B260-20160331
980 _ _ |a I:(DE-He78)W610-20160331
980 _ _ |a I:(DE-He78)B087-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21