000177484 001__ 177484
000177484 005__ 20240320153914.0
000177484 0247_ $$2doi$$a10.1038/s41467-020-14367-0
000177484 0247_ $$2pmid$$apmid:32024854
000177484 0247_ $$2pmc$$apmc:PMC7002574
000177484 0247_ $$2altmetric$$aaltmetric:75078185
000177484 037__ $$aDKFZ-2021-02571
000177484 041__ $$aEnglish
000177484 082__ $$a500
000177484 1001_ $$aReyna, Matthew A$$b0
000177484 245__ $$aPathway and network analysis of more than 2500 whole cancer genomes.
000177484 260__ $$a[London]$$bNature Publishing Group UK$$c2020
000177484 3367_ $$2DRIVER$$aarticle
000177484 3367_ $$2DataCite$$aOutput Types/Journal article
000177484 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1710945443_32161
000177484 3367_ $$2BibTeX$$aARTICLE
000177484 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000177484 3367_ $$00$$2EndNote$$aJournal Article
000177484 500__ $$asiehe Correction: DKFZ Autoren affiliiert im PCAWG Consortium: https://inrepo02.dkfz.de/record/212441 / https://doi.org/10.1038/s41467-022-32334-9
000177484 520__ $$aThe catalog of cancer driver mutations in protein-coding genes has greatly expanded in the past decade. However, non-coding cancer driver mutations are less well-characterized and only a handful of recurrent non-coding mutations, most notably TERT promoter mutations, have been reported. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, which aggregated whole genome sequencing data from 2658 cancer across 38 tumor types, we perform multi-faceted pathway and network analyses of non-coding mutations across 2583 whole cancer genomes from 27 tumor types compiled by the ICGC/TCGA PCAWG project that was motivated by the success of pathway and network analyses in prioritizing rare mutations in protein-coding genes. While few non-coding genomic elements are recurrently mutated in this cohort, we identify 93 genes harboring non-coding mutations that cluster into several modules of interacting proteins. Among these are promoter mutations associated with reduced mRNA expression in TP53, TLE4, and TCF4. We find that biological processes had variable proportions of coding and non-coding mutations, with chromatin remodeling and proliferation pathways altered primarily by coding mutations, while developmental pathways, including Wnt and Notch, altered by both coding and non-coding mutations. RNA splicing is primarily altered by non-coding mutations in this cohort, and samples containing non-coding mutations in well-known RNA splicing factors exhibit similar gene expression signatures as samples with coding mutations in these genes. These analyses contribute a new repertoire of possible cancer genes and mechanisms that are altered by non-coding mutations and offer insights into additional cancer vulnerabilities that can be investigated for potential therapeutic treatments.
000177484 536__ $$0G:(DE-HGF)POF3-312$$a312 - Functional and structural genomics (POF3-312)$$cPOF3-312$$fPOF III$$x0
000177484 588__ $$aDataset connected to CrossRef, PubMed, , Journals: inrepo01.inet.dkfz-heidelberg.de
000177484 650_2 $$2MeSH$$aChromatin Assembly and Disassembly
000177484 650_2 $$2MeSH$$aComputational Biology: methods
000177484 650_2 $$2MeSH$$aDatabases, Genetic
000177484 650_2 $$2MeSH$$aGene Expression Regulation, Neoplastic
000177484 650_2 $$2MeSH$$aGenome, Human
000177484 650_2 $$2MeSH$$aHumans
000177484 650_2 $$2MeSH$$aMetabolic Networks and Pathways: genetics
000177484 650_2 $$2MeSH$$aMutation
000177484 650_2 $$2MeSH$$aNeoplasms: genetics
000177484 650_2 $$2MeSH$$aNeoplasms: metabolism
000177484 650_2 $$2MeSH$$aPromoter Regions, Genetic
000177484 650_2 $$2MeSH$$aRNA Splicing
000177484 7001_ $$aHaan, David$$b1
000177484 7001_ $$aPaczkowska, Marta$$b2
000177484 7001_ $$aVerbeke, Lieven P C$$b3
000177484 7001_ $$aVazquez, Miguel$$b4
000177484 7001_ $$aKahraman, Abdullah$$b5
000177484 7001_ $$aPulido-Tamayo, Sergio$$b6
000177484 7001_ $$aBarenboim, Jonathan$$b7
000177484 7001_ $$aWadi, Lina$$b8
000177484 7001_ $$aDhingra, Priyanka$$b9
000177484 7001_ $$aShrestha, Raunak$$b10
000177484 7001_ $$aGetz, Gad$$b11
000177484 7001_ $$aLawrence, Michael S$$b12
000177484 7001_ $$aPedersen, Jakob Skou$$b13
000177484 7001_ $$aRubin, Mark A$$b14
000177484 7001_ $$aWheeler, David A$$b15
000177484 7001_ $$aBrunak, Søren$$b16
000177484 7001_ $$aIzarzugaza, Jose M G$$b17
000177484 7001_ $$aKhurana, Ekta$$b18
000177484 7001_ $$aMarchal, Kathleen$$b19
000177484 7001_ $$avon Mering, Christian$$b20
000177484 7001_ $$aSahinalp, S Cenk$$b21
000177484 7001_ $$aValencia, Alfonso$$b22
000177484 7001_ $$aDrivers, PCAWG$$b23
000177484 7001_ $$0P:(DE-HGF)0$$aFunctionalInterpretationWorkingGroup$$b24
000177484 7001_ $$aReimand, Jüri$$b25
000177484 7001_ $$aStuart, Joshua M$$b26
000177484 7001_ $$aRaphael, Benjamin J$$b27
000177484 7001_ $$0P:(DE-HGF)0$$aPCAWGConsortium$$b28
000177484 773__ $$0PERI:(DE-600)2553671-0$$a10.1038/s41467-020-14367-0$$gVol. 11, no. 1, p. 729$$n1$$p729$$tNature Communications$$v11$$x2041-1723$$y2020
000177484 909CO $$ooai:inrepo02.dkfz.de:177484$$pVDB
000177484 9131_ $$0G:(DE-HGF)POF3-312$$1G:(DE-HGF)POF3-310$$2G:(DE-HGF)POF3-300$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vFunctional and structural genomics$$x0
000177484 9141_ $$y2020
000177484 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNAT COMMUN : 2019$$d2021-02-02
000177484 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-02-02
000177484 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-02-02
000177484 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2021-02-02
000177484 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2021-02-02
000177484 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2021-02-02
000177484 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Peer review$$d2021-02-02
000177484 915__ $$0LIC:(DE-HGF)CCBYNV$$2V:(DE-HGF)$$aCreative Commons Attribution CC BY (No Version)$$bDOAJ$$d2021-02-02
000177484 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-02-02
000177484 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2021-02-02
000177484 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-02
000177484 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2021-02-02
000177484 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-02-02
000177484 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences$$d2021-02-02
000177484 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record$$d2021-02-02
000177484 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2021-02-02
000177484 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-02
000177484 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-02-02
000177484 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bNAT COMMUN : 2019$$d2021-02-02
000177484 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2021-02-02
000177484 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2021-02-02
000177484 9201_ $$0I:(DE-He78)B080-20160331$$kB080$$lTheoretische Bioinformatik$$x0
000177484 9201_ $$0I:(DE-He78)B240-20160331$$kB240$$lBioinformatik und Omics Data Analytics$$x1
000177484 9201_ $$0I:(DE-He78)B370-20160331$$kB370$$lEpigenomik$$x2
000177484 9201_ $$0I:(DE-He78)B330-20160331$$kB330$$lAngewandte Bioinformatik$$x3
000177484 9201_ $$0I:(DE-He78)HD01-20160331$$kHD01$$lDKTK HD zentral$$x4
000177484 9201_ $$0I:(DE-He78)B060-20160331$$kB060$$lB060 Molekulare Genetik$$x5
000177484 9201_ $$0I:(DE-He78)B360-20160331$$kB360$$lPädiatrische Gliomforschung$$x6
000177484 9201_ $$0I:(DE-He78)BE01-20160331$$kBE01$$lDKTK Koordinierungsstelle Berlin$$x7
000177484 9201_ $$0I:(DE-He78)B062-20160331$$kB062$$lB062 Pädiatrische Neuroonkologie$$x8
000177484 9201_ $$0I:(DE-He78)B066-20160331$$kB066$$lB066 Chromatin-Netzwerke$$x9
000177484 9201_ $$0I:(DE-He78)B063-20160331$$kB063$$lB063 Krebsgenomforschung$$x10
000177484 9201_ $$0I:(DE-He78)W190-20160331$$kW190$$lHochdurchsatz-Sequenzierung$$x11
000177484 9201_ $$0I:(DE-He78)B260-20160331$$kB260$$lB260 Bioinformatik der Genomik und Systemgenetik$$x12
000177484 9201_ $$0I:(DE-He78)W610-20160331$$kW610$$lCore Facility Omics IT$$x13
000177484 9201_ $$0I:(DE-He78)B087-20160331$$kB087$$lB087 Neuroblastom Genomik$$x14
000177484 980__ $$ajournal
000177484 980__ $$aVDB
000177484 980__ $$aI:(DE-He78)B080-20160331
000177484 980__ $$aI:(DE-He78)B240-20160331
000177484 980__ $$aI:(DE-He78)B370-20160331
000177484 980__ $$aI:(DE-He78)B330-20160331
000177484 980__ $$aI:(DE-He78)HD01-20160331
000177484 980__ $$aI:(DE-He78)B060-20160331
000177484 980__ $$aI:(DE-He78)B360-20160331
000177484 980__ $$aI:(DE-He78)BE01-20160331
000177484 980__ $$aI:(DE-He78)B062-20160331
000177484 980__ $$aI:(DE-He78)B066-20160331
000177484 980__ $$aI:(DE-He78)B063-20160331
000177484 980__ $$aI:(DE-He78)W190-20160331
000177484 980__ $$aI:(DE-He78)B260-20160331
000177484 980__ $$aI:(DE-He78)W610-20160331
000177484 980__ $$aI:(DE-He78)B087-20160331
000177484 980__ $$aUNRESTRICTED