TY - JOUR
AU - Jiao, Wei
AU - Atwal, Gurnit
AU - Polak, Paz
AU - Karlic, Rosa
AU - Cuppen, Edwin
AU - PCAWGTumorSubtypesClinicalTranslationWorkingGroup
AU - Danyi, Alexandra
AU - de Ridder, Jeroen
AU - van Herpen, Carla
AU - Lolkema, Martijn P
AU - Steeghs, Neeltje
AU - Getz, Gad
AU - Morris, Quaid
AU - Stein, Lincoln D
AU - PCAWGConsortium
TI - A deep learning system accurately classifies primary and metastatic cancers using passenger mutation patterns.
JO - Nature Communications
VL - 11
IS - 1
SN - 2041-1723
CY - [London]
PB - Nature Publishing Group UK
M1 - DKFZ-2021-02572
SP - 728
PY - 2020
N1 - siehe Correction: DKFZ Autoren affiliiert im PCAWG Consortium: https://inrepo02.dkfz.de/record/212437 / https://doi.org/10.1038/s41467-022-32329-6
AB - In cancer, the primary tumour's organ of origin and histopathology are the strongest determinants of its clinical behaviour, but in 3
KW - Computational Biology: methods
KW - Deep Learning
KW - Female
KW - Genome, Human
KW - Humans
KW - Male
KW - Mutation
KW - Neoplasm Metastasis
KW - Neoplasms: genetics
KW - Neoplasms: pathology
KW - Reproducibility of Results
KW - Whole Genome Sequencing
LB - PUB:(DE-HGF)16
C6 - pmid:32024849
C2 - pmc:PMC7002586
DO - DOI:10.1038/s41467-019-13825-8
UR - https://inrepo02.dkfz.de/record/177485
ER -