001     177491
005     20240229133741.0
024 7 _ |a 10.3389/fimmu.2021.724914
|2 doi
024 7 _ |a pmid:34745097
|2 pmid
024 7 _ |a pmc:PMC8564481
|2 pmc
024 7 _ |a altmetric:115474883
|2 altmetric
037 _ _ |a DKFZ-2021-02578
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Kaur, Arvinpreet
|b 0
245 _ _ |a The Omic Insights on Unfolding Saga of COVID-19.
260 _ _ |a Lausanne
|c 2021
|b Frontiers Media
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1637243709_30274
|2 PUB:(DE-HGF)
|x Review Article
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The year 2019 has seen an emergence of the novel coronavirus named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causing coronavirus disease of 2019 (COVID-19). Since the onset of the pandemic, biological and interdisciplinary research is being carried out across the world at a rapid pace to beat the pandemic. There is an increased need to comprehensively understand various aspects of the virus from detection to treatment options including drugs and vaccines for effective global management of the disease. In this review, we summarize the salient findings pertaining to SARS-CoV-2 biology, including symptoms, hosts, epidemiology, SARS-CoV-2 genome, and its emerging variants, viral diagnostics, host-pathogen interactions, alternative antiviral strategies and application of machine learning heuristics and artificial intelligence for effective management of COVID-19 and future pandemics.
536 _ _ |a 312 - Funktionelle und strukturelle Genomforschung (POF4-312)
|0 G:(DE-HGF)POF4-312
|c POF4-312
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo01.inet.dkfz-heidelberg.de
650 _ 7 |a COVID-19
|2 Other
650 _ 7 |a ORFs
|2 Other
650 _ 7 |a SARS-CoV-2
|2 Other
650 _ 7 |a co-morbidities
|2 Other
650 _ 7 |a machine learning
|2 Other
700 1 _ |a Chopra, Mehak
|b 1
700 1 _ |a Bhushan, Mahak
|b 2
700 1 _ |a Gupta, Sonal
|b 3
700 1 _ |a Kumari P, Hima
|b 4
700 1 _ |a Sivagurunathan, Narmadhaa
|b 5
700 1 _ |a Shukla, Nidhi
|b 6
700 1 _ |a Rajagopal, Shalini
|b 7
700 1 _ |a Bhalothia, Purva
|b 8
700 1 _ |a Sharma, Purnima
|b 9
700 1 _ |a Naravula, Jalaja
|b 10
700 1 _ |a Suravajhala, Renuka
|b 11
700 1 _ |a Gupta, Ayam
|b 12
700 1 _ |a Abbasi, Bilal Ahmed
|b 13
700 1 _ |a Goswami, Prittam
|b 14
700 1 _ |a Singh, Harpreet
|b 15
700 1 _ |a Narang, Rahul
|b 16
700 1 _ |a Polavarapu, Rathnagiri
|b 17
700 1 _ |a Medicherla, Krishna Mohan
|b 18
700 1 _ |a Valadi, Jayaraman
|b 19
700 1 _ |a Kumar S, Anil
|b 20
700 1 _ |a Chaubey, Gyaneshwer
|b 21
700 1 _ |a Singh, Keshav K
|b 22
700 1 _ |a Bandapalli, Obul Reddy
|0 P:(DE-He78)b11ccde1801d45d32a6a60f7b396d7dc
|b 23
700 1 _ |a Kavi Kishor, Polavarapu Bilhan
|b 24
700 1 _ |a Suravajhala, Prashanth
|b 25
773 _ _ |a 10.3389/fimmu.2021.724914
|g Vol. 12, p. 724914
|0 PERI:(DE-600)2606827-8
|p 724914
|t Frontiers in immunology
|v 12
|y 2021
|x 1664-3224
909 C O |o oai:inrepo02.dkfz.de:177491
|p VDB
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 23
|6 P:(DE-He78)b11ccde1801d45d32a6a60f7b396d7dc
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-312
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Funktionelle und strukturelle Genomforschung
|x 0
914 1 _ |y 2021
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b FRONT IMMUNOL : 2019
|d 2021-01-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-01-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-01-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2021-01-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2021-01-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2021-01-29
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Blind peer review
|d 2021-01-29
915 _ _ |a Creative Commons Attribution CC BY (No Version)
|0 LIC:(DE-HGF)CCBYNV
|2 V:(DE-HGF)
|b DOAJ
|d 2021-01-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-01-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-29
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-01-29
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b FRONT IMMUNOL : 2019
|d 2021-01-29
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2021-01-29
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2021-01-29
920 1 _ |0 I:(DE-He78)B062-20160331
|k B062
|l B062 Pädiatrische Neuroonkologie
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)B062-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21