001     177720
005     20240229133748.0
024 7 _ |a 10.1088/1361-6560/ac3e0c
|2 doi
024 7 _ |a pmid:34845991
|2 pmid
024 7 _ |a 0031-9155
|2 ISSN
024 7 _ |a 1361-6560
|2 ISSN
024 7 _ |a altmetric:117878401
|2 altmetric
037 _ _ |a DKFZ-2021-02761
041 _ _ |a English
082 _ _ |a 530
100 1 _ |a Elter, Alina
|0 P:(DE-He78)d6ff1f04f2e927518e4290cc7dec3133
|b 0
|e First author
|u dkfz
245 _ _ |a End-to-end test for fractionated online adaptive MR-guided radiotherapy using a deformable anthropomorphic pelvis phantom.
260 _ _ |a Bristol
|c 2021
|b IOP Publ.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1642515028_12953
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a #EA:E040#LA:E040# / 66 245021
520 _ _ |a In MR-guided radiotherapy (MRgRT) for prostate cancer treatments inter-fractional anatomy changes such as bladder and rectum fillings may be corrected by an online adaption of the treatment plan. To clinically implement such complex treatment procedures, however, specific end-to-end tests are required that are able to validate the overall accuracy of all treatment steps from pre-treatment imaging to dose delivery.In this study, an end-to-end test of a fractionated and online adapted MRgRT prostate irradiation was performed using the so-called ADAM-PETer phantom. The phantom was adapted to perform 3D polymer gel (PG) dosimetry in the prostate and rectum. Furthermore, thermoluminescence detectors (TLDs) were placed at the center and on the surface of the prostate for additional dose measurements as well as for an external dose renormalization of the PG. For the end-to-end test, a total of five online adapted irradiations were applied in sequence with different bladder and rectum fillings, respectively.A good agreement of measured and planned dose was found represented by high γ-index passing rates (3 %⁄ 3 mm criterion) of the PG evaluation of 98.9 % in the prostate and 93.7 % in the rectum. TLDs used for PG renormalization at the center of the prostate showed a deviation of -2.3 %.The presented end-to-end test, which allows for 3D dose verification in the prostate and rectum, demonstrates the feasibility and accuracy of fractionated and online-adapted prostate irradiations in presence of inter-fractional anatomy changes. Such tests are of high clinical importance for the commissioning of new image-guided treatment procedures such as online adaptive MRgRT.
536 _ _ |a 315 - Bildgebung und Radioonkologie (POF4-315)
|0 G:(DE-HGF)POF4-315
|c POF4-315
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo01.inet.dkfz-heidelberg.de
650 _ 7 |a 3D gel dosimetry (PAGAT)
|2 Other
650 _ 7 |a Magnetic resonance-guided (adaptive) radiotherapy (MRgRT)
|2 Other
650 _ 7 |a deformable anthropomorphic pelvis phantom
|2 Other
650 _ 7 |a end-to-end test
|2 Other
650 _ 7 |a fractionated treatment
|2 Other
650 _ 7 |a inter-fractional motion
|2 Other
650 _ 7 |a thermoluminescence detectors (TLD)
|2 Other
700 1 _ |a Rippke, Carolin
|b 1
700 1 _ |a Johnen, Wibke
|0 P:(DE-He78)5c55eb63ee2ad2499f7dda0ed08c571b
|b 2
|u dkfz
700 1 _ |a Mann, Philipp
|0 P:(DE-He78)d26409e0d07007daf771142a945102ef
|b 3
|u dkfz
700 1 _ |a Hellwich, Emily
|0 P:(DE-He78)fb88b16550eaa8f0583422c5add94ef1
|b 4
|u dkfz
700 1 _ |a Schwahofer, Andrea
|0 P:(DE-He78)8918404541688dee7976f7546be900fe
|b 5
|u dkfz
700 1 _ |a Dorsch, Stefan
|0 P:(DE-He78)e43f53a20835bd25906f1795558151a3
|b 6
|u dkfz
700 1 _ |a Buchele, Carolin
|b 7
700 1 _ |a Klüter, Sebastian
|b 8
700 1 _ |a Karger, Christian
|0 P:(DE-He78)b43076fb0a30230e4323887c0c980046
|b 9
|e Last author
|u dkfz
773 _ _ |a 10.1088/1361-6560/ac3e0c
|0 PERI:(DE-600)1473501-5
|p 245021
|t Physics in medicine and biology
|v 66
|y 2021
|x 0031-9155
909 C O |p VDB
|o oai:inrepo02.dkfz.de:177720
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 0
|6 P:(DE-He78)d6ff1f04f2e927518e4290cc7dec3133
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 2
|6 P:(DE-He78)5c55eb63ee2ad2499f7dda0ed08c571b
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 3
|6 P:(DE-He78)d26409e0d07007daf771142a945102ef
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 4
|6 P:(DE-He78)fb88b16550eaa8f0583422c5add94ef1
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 5
|6 P:(DE-He78)8918404541688dee7976f7546be900fe
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 6
|6 P:(DE-He78)e43f53a20835bd25906f1795558151a3
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 9
|6 P:(DE-He78)b43076fb0a30230e4323887c0c980046
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-315
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Bildgebung und Radioonkologie
|x 0
914 1 _ |y 2021
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2021-01-28
|w ger
915 _ _ |a National-Konsortium
|0 StatID:(DE-HGF)0430
|2 StatID
|d 2021-01-28
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2021-01-28
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-01-28
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PHYS MED BIOL : 2019
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2021-01-28
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2021-01-28
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2021-01-28
920 1 _ |0 I:(DE-He78)E040-20160331
|k E040
|l E040 Med. Physik in der Strahlentherapie
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)E040-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21