001     177744
005     20240229133749.0
024 7 _ |a 10.1016/j.phrs.2021.105996
|2 doi
024 7 _ |a pmid:34848323
|2 pmid
024 7 _ |a 0031-6989
|2 ISSN
024 7 _ |a 1043-6618
|2 ISSN
024 7 _ |a 1096-1186
|2 ISSN
024 7 _ |a 1879-2936
|2 ISSN
024 7 _ |a altmetric:118608085
|2 altmetric
037 _ _ |a DKFZ-2021-02785
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a ElHarouni, Dina
|0 P:(DE-He78)2bebef4e65bbcb341e31ca0999b69436
|b 0
|e First author
245 _ _ |a iTReX: Interactive exploration of mono- and combination therapy dose response profiling data.
260 _ _ |a London
|c 2022
|b Academic Press
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1642514882_16197
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a #EA:B062#LA:B310# / 2022 Jan;175:105996
520 _ _ |a High throughput screening methods, measuring the sensitivity and resistance of tumor cells to drug treatments have been rapidly evolving. Not only do these screens allow correlating response profiles to tumor genomic features for developing novel predictors of treatment response, but they can also add evidence for therapy decision making in precision oncology. Recent analysis methods developed for either assessing single agents or combination drug efficacies enable quantification of dose-response curves with restricted symmetric fit settings. Here, we introduce iTReX, a user-friendly and interactive Shiny/R application, for both the analysis of mono- and combination therapy responses. The application features an extended version of the drug sensitivity score (DSS) based on the integral of an advanced five-parameter dose-response curve model and a differential DSS for combination therapy profiling. Additionally, iTReX includes modules that visualize drug target interaction networks and support the detection of matches between top therapy hits and the sample omics features to enable the identification of druggable targets and biomarkers. iTReX enables the analysis of various quantitative drug or therapy response readouts (e.g. luminescence, fluorescence microscopy) and multiple treatment strategies (drug treatments, radiation). Using iTReX we validate a cost-effective drug combination screening approach and reveal the application's ability to identify potential sample-specific biomarkers based on drug target interaction networks. The iTReX web application is accessible at (https://itrex.kitz-heidelberg.de).
536 _ _ |a 312 - Funktionelle und strukturelle Genomforschung (POF4-312)
|0 G:(DE-HGF)POF4-312
|c POF4-312
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo01.inet.dkfz-heidelberg.de
650 _ 7 |a Therapy response profiling and exploration
|2 Other
650 _ 7 |a asymmetric sensitivity scoring
|2 Other
650 _ 7 |a differential combination sensitivity scoring
|2 Other
650 _ 7 |a drug target networks
|2 Other
650 _ 7 |a interactive drug screen analysis
|2 Other
650 _ 7 |a personalized medicine
|2 Other
700 1 _ |a Berker, Yannick
|0 P:(DE-He78)b9b209c7129285852f61f807f332725a
|b 1
700 1 _ |a Peterziel, Heike
|0 P:(DE-He78)2727b5cb63b52d0137d4f4e8f110ee7e
|b 2
700 1 _ |a Gopisetty, Apurva
|0 P:(DE-He78)60c36ed260d2d1aed48a8fab835b2990
|b 3
700 1 _ |a Turunen, Laura
|b 4
700 1 _ |a Kreth, Sina
|0 P:(DE-He78)21d657d65d4ad0fd8b0bbfe10fa65172
|b 5
700 1 _ |a Stainczyk, Sabine A
|0 P:(DE-He78)311fe8118b7563b455ba84e94fccb3a8
|b 6
700 1 _ |a Oehme, Ina
|0 P:(DE-He78)908367a659dea9e28dac34592b3c46e5
|b 7
700 1 _ |a Pietiäinen, Vilja
|b 8
700 1 _ |a Jäger, Natalie
|0 P:(DE-He78)cdb92ef7ba174fe8d6823ccb628013c0
|b 9
700 1 _ |a Witt, Olaf
|0 P:(DE-He78)143af26de9d57bf624771616318aaf7c
|b 10
700 1 _ |a Schlesner, Matthias
|0 P:(DE-He78)f2a782242acf94a3114d75c45dc75b37
|b 11
700 1 _ |a Oppermann, Sina
|0 P:(DE-He78)55dfd5b374ab9bccdb49e06e91345571
|b 12
|e Last author
773 _ _ |a 10.1016/j.phrs.2021.105996
|g p. 105996 -
|0 PERI:(DE-600)1471456-5
|p 105996
|t Pharmacological research
|v 175
|y 2022
|x 0031-6989
909 C O |p VDB
|o oai:inrepo02.dkfz.de:177744
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 0
|6 P:(DE-He78)2bebef4e65bbcb341e31ca0999b69436
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 1
|6 P:(DE-He78)b9b209c7129285852f61f807f332725a
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 2
|6 P:(DE-He78)2727b5cb63b52d0137d4f4e8f110ee7e
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 3
|6 P:(DE-He78)60c36ed260d2d1aed48a8fab835b2990
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 5
|6 P:(DE-He78)21d657d65d4ad0fd8b0bbfe10fa65172
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 6
|6 P:(DE-He78)311fe8118b7563b455ba84e94fccb3a8
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 7
|6 P:(DE-He78)908367a659dea9e28dac34592b3c46e5
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 9
|6 P:(DE-He78)cdb92ef7ba174fe8d6823ccb628013c0
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 10
|6 P:(DE-He78)143af26de9d57bf624771616318aaf7c
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 11
|6 P:(DE-He78)f2a782242acf94a3114d75c45dc75b37
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 12
|6 P:(DE-He78)55dfd5b374ab9bccdb49e06e91345571
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-312
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Funktionelle und strukturelle Genomforschung
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2021-01-30
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-30
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2022-11-18
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-18
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PHARMACOL RES : 2021
|d 2022-11-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2022-11-18
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2022-11-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2022-11-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2022-11-18
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b PHARMACOL RES : 2021
|d 2022-11-18
920 1 _ |0 I:(DE-He78)B062-20160331
|k B062
|l B062 Pädiatrische Neuroonkologie
|x 0
920 1 _ |0 I:(DE-He78)B310-20160331
|k B310
|l KKE Pädiatrische Onkologie
|x 1
920 1 _ |0 I:(DE-He78)B087-20160331
|k B087
|l B087 Neuroblastom Genomik
|x 2
920 1 _ |0 I:(DE-He78)B240-20160331
|k B240
|l B240 Bioinformatik und Omics Data Analytics
|x 3
920 1 _ |0 I:(DE-He78)HD01-20160331
|k HD01
|l DKTK HD zentral
|x 4
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)B062-20160331
980 _ _ |a I:(DE-He78)B310-20160331
980 _ _ |a I:(DE-He78)B087-20160331
980 _ _ |a I:(DE-He78)B240-20160331
980 _ _ |a I:(DE-He78)HD01-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21