000178159 001__ 178159
000178159 005__ 20240229133801.0
000178159 0247_ $$2doi$$a10.1002/mp.15398
000178159 0247_ $$2pmid$$apmid:34908170
000178159 0247_ $$2ISSN$$a0094-2405
000178159 0247_ $$2ISSN$$a1522-8541
000178159 0247_ $$2ISSN$$a2473-4209
000178159 0247_ $$2altmetric$$aaltmetric:119020042
000178159 037__ $$aDKFZ-2021-03164
000178159 041__ $$aEnglish
000178159 082__ $$a610
000178159 1001_ $$0P:(DE-He78)914adea2baeb4f2c6a29637da6500048$$aBurigo, Lucas Norberto$$b0$$eFirst author$$udkfz
000178159 245__ $$aIntegrated MRI-guided proton therapy planning: accounting for the full MRI field in a perpendicular system.
000178159 260__ $$aCollege Park, Md.$$bAAPM$$c2022
000178159 3367_ $$2DRIVER$$aarticle
000178159 3367_ $$2DataCite$$aOutput Types/Journal article
000178159 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1651053557_21831
000178159 3367_ $$2BibTeX$$aARTICLE
000178159 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000178159 3367_ $$00$$2EndNote$$aJournal Article
000178159 500__ $$a#EA:E040# / 2022 Mar;49(3):1853-1873
000178159 520__ $$aTo present a first study on the treatment planning feasibility in perpendicular field MRI-integrated proton therapy which considers the full transport of protons from the pencil beam scanning assembly to the patient inside the MRI scanner.A generic proton pencil beam scanning (PBS) gantry was modelled as being integrated with a realistic split-bore MRI system in the perpendicular orientation. MRI field strengths were modeled as 0.5 T, 1 T, and 1.5 T. The PBS beam delivery and dose calculation was modeled using the TOPAS Monte Carlo toolkit coupled with matRad as the optimizer engine. A water phantom, liver and prostate plans were evaluated and optimized in the presence of the full MRI field distribution. A simple combination of gantry angle offset and small PBS nozzle skew was used to direct the proton beams along a path that closely follows the reference planning scenario, i.e. without magnetic field.All planning metrics could be successfully achieved with the inclusion of gantry angle offsets in the range of 8°-29° when coupled with a PBS nozzle skew of 1.6°-4.4°. These two hardware based corrections were selected to minimize the average Euclidean distance (AED) in the beam path enabling the proton beams to travel inside the patient in a path that is close to the original path (AED smaller than 3 mm at 1.5 T). Final dose optimization, performed through further changes in the pencil beam scanning delivery, was then shown to be feasible for our selection of plans studied yielding comparable plan quality metrics to reference conditions.For the first time, we have shown a robust method to account for the full proton beam deflection in a perpendicular orientation MRI-integrated proton therapy. These results support the ongoing development of the current prototype systems. This article is protected by copyright. All rights reserved.
000178159 536__ $$0G:(DE-HGF)POF4-315$$a315 - Bildgebung und Radioonkologie (POF4-315)$$cPOF4-315$$fPOF IV$$x0
000178159 588__ $$aDataset connected to CrossRef, PubMed, , Journals: inrepo01.inet.dkfz-heidelberg.de
000178159 650_7 $$2Other$$aMR-guided proton therapy
000178159 650_7 $$2Other$$amagnetic fields
000178159 650_7 $$2Other$$amonte carlo
000178159 7001_ $$aOborn, Bradley M$$b1
000178159 773__ $$0PERI:(DE-600)1466421-5$$a10.1002/mp.15398$$gp. mp.15398$$p1853-1873$$tMedical physics$$v49$$x0094-2405$$y2022
000178159 909CO $$ooai:inrepo02.dkfz.de:178159$$pVDB
000178159 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)914adea2baeb4f2c6a29637da6500048$$aDeutsches Krebsforschungszentrum$$b0$$kDKFZ
000178159 9131_ $$0G:(DE-HGF)POF4-315$$1G:(DE-HGF)POF4-310$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vBildgebung und Radioonkologie$$x0
000178159 9141_ $$y2021
000178159 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2021-02-02$$wger
000178159 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-02
000178159 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-02
000178159 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-12
000178159 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-12
000178159 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-12
000178159 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine$$d2022-11-12
000178159 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2022-11-12
000178159 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bMED PHYS : 2021$$d2022-11-12
000178159 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-12
000178159 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2022-11-12
000178159 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2022-11-12
000178159 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2022-11-12
000178159 9201_ $$0I:(DE-He78)E040-20160331$$kE040$$lE040 Med. Physik in der Strahlentherapie$$x0
000178159 980__ $$ajournal
000178159 980__ $$aVDB
000178159 980__ $$aI:(DE-He78)E040-20160331
000178159 980__ $$aUNRESTRICTED