001     178159
005     20240229133801.0
024 7 _ |a 10.1002/mp.15398
|2 doi
024 7 _ |a pmid:34908170
|2 pmid
024 7 _ |a 0094-2405
|2 ISSN
024 7 _ |a 1522-8541
|2 ISSN
024 7 _ |a 2473-4209
|2 ISSN
024 7 _ |a altmetric:119020042
|2 altmetric
037 _ _ |a DKFZ-2021-03164
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Burigo, Lucas Norberto
|0 P:(DE-He78)914adea2baeb4f2c6a29637da6500048
|b 0
|e First author
|u dkfz
245 _ _ |a Integrated MRI-guided proton therapy planning: accounting for the full MRI field in a perpendicular system.
260 _ _ |a College Park, Md.
|c 2022
|b AAPM
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1651053557_21831
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a #EA:E040# / 2022 Mar;49(3):1853-1873
520 _ _ |a To present a first study on the treatment planning feasibility in perpendicular field MRI-integrated proton therapy which considers the full transport of protons from the pencil beam scanning assembly to the patient inside the MRI scanner.A generic proton pencil beam scanning (PBS) gantry was modelled as being integrated with a realistic split-bore MRI system in the perpendicular orientation. MRI field strengths were modeled as 0.5 T, 1 T, and 1.5 T. The PBS beam delivery and dose calculation was modeled using the TOPAS Monte Carlo toolkit coupled with matRad as the optimizer engine. A water phantom, liver and prostate plans were evaluated and optimized in the presence of the full MRI field distribution. A simple combination of gantry angle offset and small PBS nozzle skew was used to direct the proton beams along a path that closely follows the reference planning scenario, i.e. without magnetic field.All planning metrics could be successfully achieved with the inclusion of gantry angle offsets in the range of 8°-29° when coupled with a PBS nozzle skew of 1.6°-4.4°. These two hardware based corrections were selected to minimize the average Euclidean distance (AED) in the beam path enabling the proton beams to travel inside the patient in a path that is close to the original path (AED smaller than 3 mm at 1.5 T). Final dose optimization, performed through further changes in the pencil beam scanning delivery, was then shown to be feasible for our selection of plans studied yielding comparable plan quality metrics to reference conditions.For the first time, we have shown a robust method to account for the full proton beam deflection in a perpendicular orientation MRI-integrated proton therapy. These results support the ongoing development of the current prototype systems. This article is protected by copyright. All rights reserved.
536 _ _ |a 315 - Bildgebung und Radioonkologie (POF4-315)
|0 G:(DE-HGF)POF4-315
|c POF4-315
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo01.inet.dkfz-heidelberg.de
650 _ 7 |a MR-guided proton therapy
|2 Other
650 _ 7 |a magnetic fields
|2 Other
650 _ 7 |a monte carlo
|2 Other
700 1 _ |a Oborn, Bradley M
|b 1
773 _ _ |a 10.1002/mp.15398
|g p. mp.15398
|0 PERI:(DE-600)1466421-5
|p 1853-1873
|t Medical physics
|v 49
|y 2022
|x 0094-2405
909 C O |p VDB
|o oai:inrepo02.dkfz.de:178159
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 0
|6 P:(DE-He78)914adea2baeb4f2c6a29637da6500048
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-315
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Bildgebung und Radioonkologie
|x 0
914 1 _ |y 2021
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2021-02-02
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-02-02
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2022-11-12
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b MED PHYS : 2021
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2022-11-12
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2022-11-12
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2022-11-12
920 1 _ |0 I:(DE-He78)E040-20160331
|k E040
|l E040 Med. Physik in der Strahlentherapie
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)E040-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21