000178161 001__ 178161
000178161 005__ 20240229133801.0
000178161 0247_ $$2doi$$a10.1016/j.mri.2021.11.016
000178161 0247_ $$2pmid$$apmid:34906631
000178161 0247_ $$2ISSN$$a0730-725X
000178161 0247_ $$2ISSN$$a1873-5894
000178161 0247_ $$2altmetric$$aaltmetric:118990050
000178161 037__ $$aDKFZ-2021-03166
000178161 041__ $$aEnglish
000178161 082__ $$a610
000178161 1001_ $$aMüller, Max$$b0
000178161 245__ $$aDirect imaging of white matter ultrashort T2∗ components at 7 tesla.
000178161 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2021
000178161 3367_ $$2DRIVER$$aarticle
000178161 3367_ $$2DataCite$$aOutput Types/Journal article
000178161 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1639982847_32759
000178161 3367_ $$2BibTeX$$aARTICLE
000178161 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000178161 3367_ $$00$$2EndNote$$aJournal Article
000178161 500__ $$a#LA:E020#
000178161 520__ $$aTo demonstrate direct imaging of the white matter ultrashort T2∗ components at 7 Tesla using inversion recovery (IR)-enhanced ultrashort echo time (UTE) MRI. To investigate its characteristics, potentials and limitations, and to establish a clinical protocol.The IR UTE technique suppresses long T2∗ signals within white matter by using adiabatic inversion in combination with dual-echo difference imaging. Artifacts arising at 7 T from long T2∗ scalp fat components were reduced by frequency shifting the IR pulse such that those frequencies were inverted likewise. For 8 healthy volunteers, the T2∗ relaxation times of white matter were then quantified. In 20 healthy volunteers, the UTE difference and fraction contrast were evaluated. Finally, in 6 patients with multiple sclerosis (MS), the performance of the technique was assessed.A frequency shift of -1.2 ppm of the IR pulse (i.e. towards the fat frequency) provided a good suppression of artifacts. With this, an ultrashort compartment of (68 ± 6) % with a T2∗ time of (147 ± 58) μs was quantified with a chemical shift of (-3.6 ± 0.5) ppm from water. Within healthy volunteers' white matter, a stable ultrashort T2∗ fraction contrast was calculated. For the MS patients, a significant fraction reduction in the identified lesions as well as in the normal-appearing white matter was observed.The quantification results indicate that the observed ultrashort components arise primarily from myelin tissue. Direct IR UTE imaging of the white matter ultrashort T2∗ components is thus feasible at 7 T with high quantitative inter-subject repeatability and good detection of signal loss in MS.
000178161 536__ $$0G:(DE-HGF)POF4-315$$a315 - Bildgebung und Radioonkologie (POF4-315)$$cPOF4-315$$fPOF IV$$x0
000178161 588__ $$aDataset connected to CrossRef, PubMed, , Journals: inrepo01.inet.dkfz-heidelberg.de
000178161 650_7 $$2Other$$a7 tesla, relaxometry
000178161 650_7 $$2Other$$aMultiple sclerosis
000178161 650_7 $$2Other$$aMyelin
000178161 650_7 $$2Other$$aUltrashort echo time (UTE)
000178161 650_7 $$2Other$$aWhite matter
000178161 7001_ $$aEgger, Nico$$b1
000178161 7001_ $$aSommer, Stefan$$b2
000178161 7001_ $$aWilferth, Tobias$$b3
000178161 7001_ $$aMeixner, Christian R$$b4
000178161 7001_ $$aLaun, Frederik Bernd$$b5
000178161 7001_ $$aMennecke, Angelika$$b6
000178161 7001_ $$aSchmidt, Manuel$$b7
000178161 7001_ $$aHuhn, Konstantin$$b8
000178161 7001_ $$aRothhammer, Veit$$b9
000178161 7001_ $$aUder, Michael$$b10
000178161 7001_ $$aDörfler, Arnd$$b11
000178161 7001_ $$0P:(DE-He78)054fd7a5195b75b11fbdc5c360276011$$aNagel, Armin$$b12$$eLast author$$udkfz
000178161 773__ $$0PERI:(DE-600)1500646-3$$a10.1016/j.mri.2021.11.016$$gVol. 86, p. 107 - 117$$p107 - 117$$tMagnetic resonance imaging$$v86$$x0730-725X$$y2021
000178161 909CO $$ooai:inrepo02.dkfz.de:178161$$pVDB
000178161 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)054fd7a5195b75b11fbdc5c360276011$$aDeutsches Krebsforschungszentrum$$b12$$kDKFZ
000178161 9131_ $$0G:(DE-HGF)POF4-315$$1G:(DE-HGF)POF4-310$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vBildgebung und Radioonkologie$$x0
000178161 9141_ $$y2021
000178161 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2021-01-31$$wger
000178161 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bMAGN RESON IMAGING : 2019$$d2021-01-31
000178161 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-31
000178161 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-31
000178161 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-01-31
000178161 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-01-31
000178161 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-31
000178161 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-31
000178161 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine$$d2021-01-31
000178161 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-31
000178161 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-31
000178161 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-01-31
000178161 9201_ $$0I:(DE-He78)E020-20160331$$kE020$$lE020 Med. Physik in der Radiologie$$x0
000178161 980__ $$ajournal
000178161 980__ $$aVDB
000178161 980__ $$aI:(DE-He78)E020-20160331
000178161 980__ $$aUNRESTRICTED