000178481 001__ 178481
000178481 005__ 20240229143548.0
000178481 0247_ $$2doi$$a10.1002/acm2.13523
000178481 0247_ $$2pmid$$apmid:35019212
000178481 0247_ $$2altmetric$$aaltmetric:120753555
000178481 037__ $$aDKFZ-2022-00099
000178481 041__ $$aEnglish
000178481 082__ $$a530
000178481 1001_ $$aRippke, Carolin$$b0
000178481 245__ $$aQuality assurance for on-table adaptive magnetic resonance guided radiation therapy: A software tool to complement secondary dose calculation and failure modes discovered in clinical routine.
000178481 260__ $$aReston, Va.$$bACMP$$c2022
000178481 3367_ $$2DRIVER$$aarticle
000178481 3367_ $$2DataCite$$aOutput Types/Journal article
000178481 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1648038151_3499
000178481 3367_ $$2BibTeX$$aARTICLE
000178481 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000178481 3367_ $$00$$2EndNote$$aJournal Article
000178481 500__ $$a2022 Mar;23(3):e13523
000178481 520__ $$aOnline adaption of treatment plans on a magnetic resonance (MR)-Linac enables the daily creation of new (adapted) treatment plans using current anatomical information of the patient as seen on MR images. Plan quality assurance (QA) relies on a secondary dose calculation (SDC) that is required because a pretreatment measurement is impossible during the adaptive workflow. However, failure mode and effect analysis of the adaptive planning process shows a large number of error sources, and not all of them are covered by SDC. As the complex multidisciplinary adaption process takes place under time pressure, additional software solutions for pretreatment per-fraction QA need to be used. It is essential to double-check SDC input to ensure a safe treatment delivery. Here, we present an automated treatment plan check tool for adaptive radiotherapy (APART) at a 0.35 T MR-Linac. It is designed to complement the manufacturer-provided adaptive QA tool comprising SDC. Checks performed by APART include contour analysis, electron density map examinations, and fluence modulation complexity controls. For nine of 362 adapted fractions (2.5%), irregularities regarding missing slices in target volumes and organs at risks as well as in margin expansion of target volumes have been found. This demonstrates that mistakes occur and can be detected by additional QA measures, especially contour analysis. Therefore, it is recommended to implement further QA tools additional to what the manufacturer provides to facilitate an informed decision about the quality of the treatment plan.
000178481 536__ $$0G:(DE-HGF)POF4-315$$a315 - Bildgebung und Radioonkologie (POF4-315)$$cPOF4-315$$fPOF IV$$x0
000178481 588__ $$aDataset connected to CrossRef, PubMed, , Journals: inrepo01.inet.dkfz-heidelberg.de
000178481 650_7 $$2Other$$aMR-guided radiation therapy
000178481 650_7 $$2Other$$aadaptive radiotherapy
000178481 650_7 $$2Other$$afailure mode and effect analysis (FMEA)
000178481 650_7 $$2Other$$aimage-guided radiotherapy
000178481 650_7 $$2Other$$aon-table adaptive
000178481 650_7 $$2Other$$aonline adaptive
000178481 650_7 $$2Other$$aquality assurance
000178481 650_7 $$2Other$$arisk management
000178481 7001_ $$aSchrenk, Oliver$$b1
000178481 7001_ $$aRenkamp, C Katharina$$b2
000178481 7001_ $$aBuchele, Carolin$$b3
000178481 7001_ $$0P:(DE-He78)c59ff25b48c192ed3fd4ad3a4bc9b9c0$$aHörner-Rieber, Juliane$$b4$$udkfz
000178481 7001_ $$0P:(DE-He78)8714da4e45acfa36ce87c291443a9218$$aDebus, Jürgen$$b5$$udkfz
000178481 7001_ $$aAlber, Markus$$b6
000178481 7001_ $$aKlüter, Sebastian$$b7
000178481 773__ $$0PERI:(DE-600)2010347-5$$a10.1002/acm2.13523$$n3$$pe13523$$tJournal of applied clinical medical physics$$v23$$x1526-9914$$y2022
000178481 909CO $$ooai:inrepo02.dkfz.de:178481$$pVDB
000178481 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)c59ff25b48c192ed3fd4ad3a4bc9b9c0$$aDeutsches Krebsforschungszentrum$$b4$$kDKFZ
000178481 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)8714da4e45acfa36ce87c291443a9218$$aDeutsches Krebsforschungszentrum$$b5$$kDKFZ
000178481 9131_ $$0G:(DE-HGF)POF4-315$$1G:(DE-HGF)POF4-310$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vBildgebung und Radioonkologie$$x0
000178481 9141_ $$y2022
000178481 915__ $$0LIC:(DE-HGF)CCBYNV$$2V:(DE-HGF)$$aCreative Commons Attribution CC BY (No Version)$$bDOAJ$$d2021-02-03
000178481 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-03
000178481 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-03
000178481 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2021-02-03
000178481 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2021-02-03
000178481 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ APPL CLIN MED PHYS : 2021$$d2022-11-29
000178481 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-29
000178481 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-29
000178481 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2021-04-16T15:13:28Z
000178481 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2021-04-16T15:13:28Z
000178481 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Double blind peer review$$d2021-04-16T15:13:28Z
000178481 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-29
000178481 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-29
000178481 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2022-11-29
000178481 9201_ $$0I:(DE-He78)E050-20160331$$kE050$$lE050 KKE Strahlentherapie$$x0
000178481 9201_ $$0I:(DE-He78)HD01-20160331$$kHD01$$lDKTK HD zentral$$x1
000178481 980__ $$ajournal
000178481 980__ $$aVDB
000178481 980__ $$aI:(DE-He78)E050-20160331
000178481 980__ $$aI:(DE-He78)HD01-20160331
000178481 980__ $$aUNRESTRICTED