001     178510
005     20240229143548.0
024 7 _ |a 10.1093/jnci/djac003
|2 doi
024 7 _ |a pmid:35026030
|2 pmid
024 7 _ |a 0027-8874
|2 ISSN
024 7 _ |a 0198-0157
|2 ISSN
024 7 _ |a 1460-2105
|2 ISSN
024 7 _ |a altmetric:120847176
|2 altmetric
037 _ _ |a DKFZ-2022-00107
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Archambault, Alexi N
|b 0
245 _ _ |a Risk Stratification for Early-Onset Colorectal Cancer Using a Combination of Genetic and Environmental Risk Scores: An International Multi-Center Study.
260 _ _ |a Oxford
|c 2022
|b Oxford Univ. Press
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1651150939_30565
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a 2022 Apr 11;114(4):528-539
520 _ _ |a Incidence of colorectal cancer (CRC) among individuals aged less than 50 years has been increasing. As screening guidelines lower the recommended age of screening initiation, concerns including the burden on screening capacity and costs have been recognized, suggesting that an individualized approach may be warranted. We developed risk prediction models for early-onset CRC that incorporate an environmental risk score (ERS), including 16 lifestyle and environmental factors, and a polygenic risk score (PRS), of 141 variants.Relying on risk score weights for ERS and PRS derived from studies of CRC at all ages, we evaluated risks for early-onset CRC in 3,486 cases and 3,890 controls aged less than 50 years. Relative and absolute risks for early-onset CRC were assessed according to values of the ERS and PRS. The discriminatory performance of these scores was estimated using the covariate-adjusted area under the receiver operating characteristic curve.Increasing values of ERS and PRS were associated with increasing relative risks for early-onset CRC (odds ratio per standard deviation of ERS = 1.14, 95% confidence interval [CI] = 1.08, 1.20; odds ratio per standard deviation of PRS = 1.59, 95% CI = 1.51, 1.68), both contributing to case-control discrimination (area under the curve = 0.631, 95% CI = 0.615, 0.647). Based on absolute risks, we can expect 26 excess cases per 10,000 men and 21 per 10,000 women, among those scoring at the 90th percentile for both risk scores.Personal risk scores have the potential to identify individuals at differential relative and absolute risk for early-onset CRC. Improved discrimination may aid in targeted CRC screening of younger, high-risk individuals, potentially improving outcomes.
536 _ _ |a 313 - Krebsrisikofaktoren und Prävention (POF4-313)
|0 G:(DE-HGF)POF4-313
|c POF4-313
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo01.inet.dkfz-heidelberg.de
700 1 _ |a Jeon, Jihyoun
|b 1
700 1 _ |a Lin, Yi
|b 2
700 1 _ |a Thomas, Minta
|b 3
700 1 _ |a Harrison, Tabitha A
|b 4
700 1 _ |a Bishop, D Timothy
|b 5
700 1 _ |a Brenner, Hermann
|0 P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2
|b 6
|u dkfz
700 1 _ |a Casey, Graham
|b 7
700 1 _ |a Chan, Andrew T
|b 8
700 1 _ |a Chang-Claude, Jenny
|0 P:(DE-He78)c259d6cc99edf5c7bc7ce22c7f87c253
|b 9
|u dkfz
700 1 _ |a Figueiredo, Jane C
|b 10
700 1 _ |a Gallinger, Steven
|b 11
700 1 _ |a Gruber, Stephen B
|b 12
700 1 _ |a Gunter, Marc J
|b 13
700 1 _ |a Guo, Feng
|0 P:(DE-He78)0311ebf3415e41860b4e2c56fbae6919
|b 14
|u dkfz
700 1 _ |a Hoffmeister, Michael
|0 P:(DE-He78)6c5d058b7552d071a7fa4c5e943fff0f
|b 15
|u dkfz
700 1 _ |a Jenkins, Mark A
|b 16
700 1 _ |a Keku, Temitope O
|b 17
700 1 _ |a Le Marchand, Loïc
|b 18
700 1 _ |a Li, Li
|b 19
700 1 _ |a Moreno, Victor
|b 20
700 1 _ |a Newcomb, Polly A
|b 21
700 1 _ |a Pai, Rish
|b 22
700 1 _ |a Parfrey, Patrick S
|b 23
700 1 _ |a Rennert, Gad
|b 24
700 1 _ |a Sakoda, Lori C
|b 25
700 1 _ |a Lee, Jeffrey K
|b 26
700 1 _ |a Slattery, Martha L
|b 27
700 1 _ |a Song, Mingyang
|b 28
700 1 _ |a Ko Win, Aung
|b 29
700 1 _ |a Woods, Michael O
|b 30
700 1 _ |a Murphy, Neil
|b 31
700 1 _ |a Campbell, Peter T
|b 32
700 1 _ |a Su, Yu-Ru
|b 33
700 1 _ |a Lansdorp-Vogelaar, Iris
|b 34
700 1 _ |a Peterse, Elisabeth Fp
|b 35
700 1 _ |a Cao, Yin
|b 36
700 1 _ |a Zeleniuch-Jacquotte, Anne
|b 37
700 1 _ |a Liang, Peter S
|b 38
700 1 _ |a Du, Mengmeng
|b 39
700 1 _ |a Corley, Douglas A
|b 40
700 1 _ |a Hsu, Li
|b 41
700 1 _ |a Peters, Ulrike
|b 42
700 1 _ |a Hayes, Richard B
|b 43
773 _ _ |a 10.1093/jnci/djac003
|0 PERI:(DE-600)1465951-7
|n 4
|p 528-539
|t Journal of the National Cancer Institute
|v 114
|y 2022
|x 0027-8874
909 C O |p VDB
|o oai:inrepo02.dkfz.de:178510
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 6
|6 P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 9
|6 P:(DE-He78)c259d6cc99edf5c7bc7ce22c7f87c253
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 14
|6 P:(DE-He78)0311ebf3415e41860b4e2c56fbae6919
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 15
|6 P:(DE-He78)6c5d058b7552d071a7fa4c5e943fff0f
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-313
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Krebsrisikofaktoren und Prävention
|x 0
914 1 _ |y 2022
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2021-01-28
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-28
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2022-11-18
|w ger
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b JNCI-J NATL CANCER I : 2021
|d 2022-11-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2022-11-18
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2022-11-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2022-11-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
|d 2022-11-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2022-11-18
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b JNCI-J NATL CANCER I : 2021
|d 2022-11-18
920 1 _ |0 I:(DE-He78)C070-20160331
|k C070
|l C070 Klinische Epidemiologie und Alternf.
|x 0
920 1 _ |0 I:(DE-He78)C120-20160331
|k C120
|l Präventive Onkologie
|x 1
920 1 _ |0 I:(DE-He78)HD01-20160331
|k HD01
|l DKTK HD zentral
|x 2
920 1 _ |0 I:(DE-He78)C020-20160331
|k C020
|l C020 Epidemiologie von Krebs
|x 3
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)C070-20160331
980 _ _ |a I:(DE-He78)C120-20160331
980 _ _ |a I:(DE-He78)HD01-20160331
980 _ _ |a I:(DE-He78)C020-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21