000178611 001__ 178611
000178611 005__ 20241220120849.0
000178611 0247_ $$2doi$$a10.1002/mp.15480
000178611 0247_ $$2pmid$$apmid:35073413
000178611 0247_ $$2ISSN$$a0094-2405
000178611 0247_ $$2ISSN$$a1522-8541
000178611 0247_ $$2ISSN$$a2473-4209
000178611 0247_ $$2altmetric$$aaltmetric:121524412
000178611 037__ $$aDKFZ-2022-00160
000178611 041__ $$aEnglish
000178611 082__ $$a610
000178611 1001_ $$0P:(DE-He78)84edc78dad0b83ad6c0633bd24a0b5b7$$aGhesquiere-Dierickx, Laura$$b0$$eFirst author$$udkfz
000178611 245__ $$aDetecting perturbations of a radiation field inside a head-sized phantom exposed to therapeutic carbon-ion beams through charged-fragment tracking.
000178611 260__ $$aCollege Park, Md.$$bAAPM$$c2022
000178611 3367_ $$2DRIVER$$aarticle
000178611 3367_ $$2DataCite$$aOutput Types/Journal article
000178611 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1648038787_2990
000178611 3367_ $$2BibTeX$$aARTICLE
000178611 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000178611 3367_ $$00$$2EndNote$$aJournal Article
000178611 500__ $$a#EA:E040#LA:E040# / 2022 Mar;49(3):1776-1792
000178611 520__ $$aNon-invasive methods to monitor carbon-ion beams in patients are desired to fully exploit the advantages of carbon-ion radiotherapy. Prompt secondary ions produced in nuclear fragmentations of carbon ions are of particular interest for monitoring purposes as they can escape the patient, and thus be detected and tracked to measure the radiation field in the irradiated object. This study aims to evaluate the performance of secondary-ion tracking to detect, visualize and localize an internal air cavity used to mimic inter-fractional changes in the patient anatomy at different depths along the beam axis.In this work, a homogeneous head phantom was irradiated with a realistic carbon-ion treatment plan with a typical prescribed fraction dose of 3 Gy (RBE). Secondary ions were detected by a mini-tracker with an active area of 2 cm2 , based on the Timepix3 semiconductor pixel detector technology. The mini-tracker was placed 120 mm behind the center of the target at an angle of 30 degrees with respect to the beam axis. To assess the performance of the developed method, a 2-mm-thick air cavity was inserted in the head phantom at several depths: in front of as well as at the entrance, in the middle and at the distal end of the target volume. Different reconstruction methods of secondary-ion emission profile were studied using the FLUKA Monte Carlo simulation package. The perturbations in the emission profiles caused by the air cavity were analyzed to detect the presence of the air cavity and localize its position.The perturbations in the radiation field mimicked by the 2-mm-thick cavity were found to be significant. A detection significance of at least three standard deviations in terms of spatial distribution of the measured tracks was found for all investigated cavity depths, while the highest significance (6 standard deviations) was obtained when the cavity was located upstream of the tumor. For a tracker with an eight-fold sensitive area, the detection significance rose to at least 9 standard deviations, and up to 17 standard deviations respectively. The cavity could be detected at all depths and its position measured within 6.5 mm ± 1.4 mm, which is sufficient for the targeted clinical performance of 10 mm.The presented systematic study concerning the detection and localization of small inter-fractional structure changes in a realistic clinical setting demonstrates that secondary ions carry a large amount of information on the internal structure of the irradiated object, and are thus attractive to be further studied for non-invasive monitoring of carbon-ion treatments. This article is protected by copyright. All rights reserved.
000178611 536__ $$0G:(DE-HGF)POF4-315$$a315 - Bildgebung und Radioonkologie (POF4-315)$$cPOF4-315$$fPOF IV$$x0
000178611 588__ $$aDataset connected to CrossRef, PubMed, , Journals: inrepo01.inet.dkfz-heidelberg.de
000178611 650_7 $$2Other$$acarbon-ion radiotherapy
000178611 650_7 $$2Other$$ainter-fractional changes
000178611 650_7 $$2Other$$anon-invasive ion-beam monitoring
000178611 650_7 $$2Other$$anuclear fragmentation
000178611 650_7 $$2Other$$asecondary ions
000178611 650_7 $$2Other$$asecondary-ion tracking
000178611 650_7 $$2Other$$asemiconductor pixel detector Timepix3
000178611 7001_ $$0P:(DE-HGF)0$$aFélix-Bautista, Renato$$b1
000178611 7001_ $$0P:(DE-He78)f0fb397c67acc1650274160f9a19a4fb$$aSchlechter, Annika$$b2$$udkfz
000178611 7001_ $$0P:(DE-He78)e37dd0bc6f3e4d55b7967219607e7d4e$$aKelleter, Laurent$$b3$$udkfz
000178611 7001_ $$0P:(DE-HGF)0$$aReimold, Marvin$$b4
000178611 7001_ $$0P:(DE-He78)5ce5a852e39ce8846d820376eb30697e$$aEchner, Gernot$$b5$$udkfz
000178611 7001_ $$aSoukup, Pavel$$b6
000178611 7001_ $$0P:(DE-He78)440a3f62ea9ea5c63375308976fc4c44$$aJäkel, Oliver$$b7$$udkfz
000178611 7001_ $$0P:(DE-He78)4af90cacc534bcab08c5a70badbb2d5e$$aGehrke, Tim$$b8$$udkfz
000178611 7001_ $$0P:(DE-He78)dfe82ba00edb8b1609794fbe37bd616f$$aMartisikova, Maria$$b9$$eLast author$$udkfz
000178611 773__ $$0PERI:(DE-600)1466421-5$$a10.1002/mp.15480$$gp. mp.15480$$n3$$p1776-1792$$tMedical physics$$v49$$x0094-2405$$y2022
000178611 8767_ $$82022 (V10366)$$92022-06-23$$d2024-12-19$$eHybrid-OA$$jZahlung erfolgt
000178611 909CO $$ooai:inrepo02.dkfz.de:178611$$pVDB$$popenCost$$pOpenAPC
000178611 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)84edc78dad0b83ad6c0633bd24a0b5b7$$aDeutsches Krebsforschungszentrum$$b0$$kDKFZ
000178611 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-HGF)0$$aDeutsches Krebsforschungszentrum$$b1$$kDKFZ
000178611 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)f0fb397c67acc1650274160f9a19a4fb$$aDeutsches Krebsforschungszentrum$$b2$$kDKFZ
000178611 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)e37dd0bc6f3e4d55b7967219607e7d4e$$aDeutsches Krebsforschungszentrum$$b3$$kDKFZ
000178611 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-HGF)0$$aDeutsches Krebsforschungszentrum$$b4$$kDKFZ
000178611 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)5ce5a852e39ce8846d820376eb30697e$$aDeutsches Krebsforschungszentrum$$b5$$kDKFZ
000178611 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)440a3f62ea9ea5c63375308976fc4c44$$aDeutsches Krebsforschungszentrum$$b7$$kDKFZ
000178611 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)4af90cacc534bcab08c5a70badbb2d5e$$aDeutsches Krebsforschungszentrum$$b8$$kDKFZ
000178611 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)dfe82ba00edb8b1609794fbe37bd616f$$aDeutsches Krebsforschungszentrum$$b9$$kDKFZ
000178611 9131_ $$0G:(DE-HGF)POF4-315$$1G:(DE-HGF)POF4-310$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vBildgebung und Radioonkologie$$x0
000178611 9141_ $$y2022
000178611 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2021-02-02$$wger
000178611 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-02
000178611 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-02
000178611 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-12
000178611 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-12
000178611 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-12
000178611 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine$$d2022-11-12
000178611 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2022-11-12
000178611 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bMED PHYS : 2021$$d2022-11-12
000178611 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-12
000178611 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2022-11-12
000178611 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2022-11-12
000178611 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2022-11-12
000178611 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
000178611 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
000178611 9202_ $$0I:(DE-He78)E040-20160331$$kE040$$lE040 Med. Physik in der Strahlentherapie$$x0
000178611 9201_ $$0I:(DE-He78)E040-20160331$$kE040$$lE040 Med. Physik in der Strahlentherapie$$x0
000178611 9200_ $$0I:(DE-He78)E040-20160331$$kE040$$lE040 Med. Physik in der Strahlentherapie$$x0
000178611 980__ $$ajournal
000178611 980__ $$aVDB
000178611 980__ $$aI:(DE-He78)E040-20160331
000178611 980__ $$aUNRESTRICTED
000178611 980__ $$aAPC