001     178611
005     20241220120849.0
024 7 _ |a 10.1002/mp.15480
|2 doi
024 7 _ |a pmid:35073413
|2 pmid
024 7 _ |a 0094-2405
|2 ISSN
024 7 _ |a 1522-8541
|2 ISSN
024 7 _ |a 2473-4209
|2 ISSN
024 7 _ |a altmetric:121524412
|2 altmetric
037 _ _ |a DKFZ-2022-00160
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Ghesquiere-Dierickx, Laura
|0 P:(DE-He78)84edc78dad0b83ad6c0633bd24a0b5b7
|b 0
|e First author
|u dkfz
245 _ _ |a Detecting perturbations of a radiation field inside a head-sized phantom exposed to therapeutic carbon-ion beams through charged-fragment tracking.
260 _ _ |a College Park, Md.
|c 2022
|b AAPM
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1648038787_2990
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a #EA:E040#LA:E040# / 2022 Mar;49(3):1776-1792
520 _ _ |a Non-invasive methods to monitor carbon-ion beams in patients are desired to fully exploit the advantages of carbon-ion radiotherapy. Prompt secondary ions produced in nuclear fragmentations of carbon ions are of particular interest for monitoring purposes as they can escape the patient, and thus be detected and tracked to measure the radiation field in the irradiated object. This study aims to evaluate the performance of secondary-ion tracking to detect, visualize and localize an internal air cavity used to mimic inter-fractional changes in the patient anatomy at different depths along the beam axis.In this work, a homogeneous head phantom was irradiated with a realistic carbon-ion treatment plan with a typical prescribed fraction dose of 3 Gy (RBE). Secondary ions were detected by a mini-tracker with an active area of 2 cm2 , based on the Timepix3 semiconductor pixel detector technology. The mini-tracker was placed 120 mm behind the center of the target at an angle of 30 degrees with respect to the beam axis. To assess the performance of the developed method, a 2-mm-thick air cavity was inserted in the head phantom at several depths: in front of as well as at the entrance, in the middle and at the distal end of the target volume. Different reconstruction methods of secondary-ion emission profile were studied using the FLUKA Monte Carlo simulation package. The perturbations in the emission profiles caused by the air cavity were analyzed to detect the presence of the air cavity and localize its position.The perturbations in the radiation field mimicked by the 2-mm-thick cavity were found to be significant. A detection significance of at least three standard deviations in terms of spatial distribution of the measured tracks was found for all investigated cavity depths, while the highest significance (6 standard deviations) was obtained when the cavity was located upstream of the tumor. For a tracker with an eight-fold sensitive area, the detection significance rose to at least 9 standard deviations, and up to 17 standard deviations respectively. The cavity could be detected at all depths and its position measured within 6.5 mm ± 1.4 mm, which is sufficient for the targeted clinical performance of 10 mm.The presented systematic study concerning the detection and localization of small inter-fractional structure changes in a realistic clinical setting demonstrates that secondary ions carry a large amount of information on the internal structure of the irradiated object, and are thus attractive to be further studied for non-invasive monitoring of carbon-ion treatments. This article is protected by copyright. All rights reserved.
536 _ _ |a 315 - Bildgebung und Radioonkologie (POF4-315)
|0 G:(DE-HGF)POF4-315
|c POF4-315
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo01.inet.dkfz-heidelberg.de
650 _ 7 |a carbon-ion radiotherapy
|2 Other
650 _ 7 |a inter-fractional changes
|2 Other
650 _ 7 |a non-invasive ion-beam monitoring
|2 Other
650 _ 7 |a nuclear fragmentation
|2 Other
650 _ 7 |a secondary ions
|2 Other
650 _ 7 |a secondary-ion tracking
|2 Other
650 _ 7 |a semiconductor pixel detector Timepix3
|2 Other
700 1 _ |a Félix-Bautista, Renato
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Schlechter, Annika
|0 P:(DE-He78)f0fb397c67acc1650274160f9a19a4fb
|b 2
|u dkfz
700 1 _ |a Kelleter, Laurent
|0 P:(DE-He78)e37dd0bc6f3e4d55b7967219607e7d4e
|b 3
|u dkfz
700 1 _ |a Reimold, Marvin
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Echner, Gernot
|0 P:(DE-He78)5ce5a852e39ce8846d820376eb30697e
|b 5
|u dkfz
700 1 _ |a Soukup, Pavel
|b 6
700 1 _ |a Jäkel, Oliver
|0 P:(DE-He78)440a3f62ea9ea5c63375308976fc4c44
|b 7
|u dkfz
700 1 _ |a Gehrke, Tim
|0 P:(DE-He78)4af90cacc534bcab08c5a70badbb2d5e
|b 8
|u dkfz
700 1 _ |a Martisikova, Maria
|0 P:(DE-He78)dfe82ba00edb8b1609794fbe37bd616f
|b 9
|e Last author
|u dkfz
773 _ _ |a 10.1002/mp.15480
|g p. mp.15480
|0 PERI:(DE-600)1466421-5
|n 3
|p 1776-1792
|t Medical physics
|v 49
|y 2022
|x 0094-2405
909 C O |o oai:inrepo02.dkfz.de:178611
|p VDB
|p OpenAPC
|p openCost
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 0
|6 P:(DE-He78)84edc78dad0b83ad6c0633bd24a0b5b7
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 1
|6 P:(DE-HGF)0
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 2
|6 P:(DE-He78)f0fb397c67acc1650274160f9a19a4fb
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 3
|6 P:(DE-He78)e37dd0bc6f3e4d55b7967219607e7d4e
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 4
|6 P:(DE-HGF)0
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 5
|6 P:(DE-He78)5ce5a852e39ce8846d820376eb30697e
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 7
|6 P:(DE-He78)440a3f62ea9ea5c63375308976fc4c44
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 8
|6 P:(DE-He78)4af90cacc534bcab08c5a70badbb2d5e
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 9
|6 P:(DE-He78)dfe82ba00edb8b1609794fbe37bd616f
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-315
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Bildgebung und Radioonkologie
|x 0
914 1 _ |y 2022
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2021-02-02
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-02-02
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2022-11-12
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b MED PHYS : 2021
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-12
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2022-11-12
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2022-11-12
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2022-11-12
915 p c |a APC keys set
|2 APC
|0 PC:(DE-HGF)0000
915 p c |a Local Funding
|2 APC
|0 PC:(DE-HGF)0001
920 2 _ |0 I:(DE-He78)E040-20160331
|k E040
|l E040 Med. Physik in der Strahlentherapie
|x 0
920 1 _ |0 I:(DE-He78)E040-20160331
|k E040
|l E040 Med. Physik in der Strahlentherapie
|x 0
920 0 _ |0 I:(DE-He78)E040-20160331
|k E040
|l E040 Med. Physik in der Strahlentherapie
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)E040-20160331
980 _ _ |a UNRESTRICTED
980 _ _ |a APC


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21