000178646 001__ 178646
000178646 005__ 20240229143552.0
000178646 0247_ $$2doi$$a10.1088/1361-6560/ac4ef8
000178646 0247_ $$2pmid$$apmid:35081516
000178646 0247_ $$2ISSN$$a0031-9155
000178646 0247_ $$2ISSN$$a1361-6560
000178646 0247_ $$2altmetric$$aaltmetric:121635897
000178646 037__ $$aDKFZ-2022-00175
000178646 041__ $$aEnglish
000178646 082__ $$a530
000178646 1001_ $$0P:(DE-He78)323817aa87b7e7b2f343fc93e9980cfd$$aWeidner, Artur$$b0$$eFirst author$$udkfz
000178646 245__ $$aAn abdominal phantom with anthropomorphic organ motion and multimodal imaging contrast for MR-guided radiotherapy.
000178646 260__ $$aBristol$$bIOP Publ.$$c2022
000178646 3367_ $$2DRIVER$$aarticle
000178646 3367_ $$2DataCite$$aOutput Types/Journal article
000178646 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1645449433_2246
000178646 3367_ $$2BibTeX$$aARTICLE
000178646 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000178646 3367_ $$00$$2EndNote$$aJournal Article
000178646 500__ $$a#EA:E040#LA:E040# / 2022 Feb 11;67(4) 045009
000178646 520__ $$aImprovements in image-guided-radiotherapy (IGRT) enable accurate and precise radiotherapy treatments of moving tumors in the abdomen while simultaneously sparing healthy tissue. However, the lack of validation tools for newly developed IGRT hybrid devices such as MR-Linac is an open issue. This study presents an abdominal phantom with respiratory organ motion and multimodal imaging contrast to perform end-to-end tests in IGRT. The abdominal phantom contains anatomically shaped liver and kidney models made of Ni-DTPA and KCl-doped agarose mixtures that can be reproducibly positioned within the phantom. Organ models are wrapped in foil to avoid ion exchange with the surrounding agarose-based fatty tissue and to allow stable imaging contrast. Breathing motion is realized by a diaphragm connected to an actuator that is hydraulically controlled via a programmable logic controller (PLC). With this system, artificial and patient-specific breathing patterns can be carried out. In 1.5 and 3 T magnetic resonance imaging (MRI) and computed tomography (CT) series, diaphragm, liver and kidney motion was measured and compared to the breathing motion of a healthy male volunteer for different breathing amplitudes including shallow, normal and deep breathing. The constructed abdominal phantom demonstrated tissue-equivalent contrast in CT as well as in MRI. T1-weighted (T1w) and T2-weighted (T2w) relaxation times and CT-numbers were 552.9 ms, 48.2 ms and 48.8 HU (liver) and 950.42 ms, 79 ms and 28.2 HU (kidney), respectively. These values were stable for more than one month. Extracted breathing motion from a healthy volunteer revealed a liver to diaphragm motion ratio (LDMR) of 64.4 % and a kidney to diaphragm motion ratio (KDMR) of 30.7 %. Well-comparable values were obtained for the phantom (LDMR: 65.5 %, KDMR: 27.5 %). The abdominal phantom demonstrated anthropomorphic imaging contrast and physiological motion pattern in MRI and CT. This allows for wide use in the validation of IGRT.
000178646 536__ $$0G:(DE-HGF)POF4-315$$a315 - Bildgebung und Radioonkologie (POF4-315)$$cPOF4-315$$fPOF IV$$x0
000178646 588__ $$aDataset connected to CrossRef, PubMed, , Journals: inrepo01.inet.dkfz-heidelberg.de
000178646 650_7 $$2Other$$aAbdominal breathing phantom
000178646 650_7 $$2Other$$aImage-guided radiotherapy
000178646 650_7 $$2Other$$aanthropomorphic image contrast
000178646 650_7 $$2Other$$aintrafractional breathing motion
000178646 650_7 $$2Other$$amagnetic resonance-guided radiotherapy
000178646 7001_ $$0P:(DE-He78)5d3fd2061719ec17ba3c894c81dbde89$$aStengl, Christina$$b1$$udkfz
000178646 7001_ $$0P:(DE-He78)35857b3e43a244ed72dae89b456adfe0$$aDinkel, Fabian$$b2$$udkfz
000178646 7001_ $$0P:(DE-He78)e43f53a20835bd25906f1795558151a3$$aDorsch, Stefan$$b3$$udkfz
000178646 7001_ $$0P:(DE-He78)8b63b8397312105c7a7d7e4aba379e22$$aMurillo, Carlos$$b4$$udkfz
000178646 7001_ $$0P:(DE-He78)d535ac1f5937626496fb38af117c2850$$aSeeber, Steffen$$b5$$udkfz
000178646 7001_ $$0P:(DE-He78)77bc493068847c689d894d2eda891c0c$$aGnirs, Regula$$b6$$udkfz
000178646 7001_ $$0P:(DE-He78)3b3ff5cc513dd71b560eb6a18e4d0c07$$aRunz, Armin$$b7$$udkfz
000178646 7001_ $$0P:(DE-He78)5ce5a852e39ce8846d820376eb30697e$$aEchner, Gernot$$b8$$udkfz
000178646 7001_ $$0P:(DE-He78)b43076fb0a30230e4323887c0c980046$$aKarger, Christian P$$b9$$udkfz
000178646 7001_ $$00000-0002-6056-9747$$aJaekel, Oliver$$b10$$eLast author
000178646 773__ $$0PERI:(DE-600)1473501-5$$a10.1088/1361-6560/ac4ef8$$n4$$p045009$$tPhysics in medicine and biology$$v67$$x0031-9155$$y2022
000178646 909CO $$ooai:inrepo02.dkfz.de:178646$$pVDB
000178646 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)323817aa87b7e7b2f343fc93e9980cfd$$aDeutsches Krebsforschungszentrum$$b0$$kDKFZ
000178646 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)5d3fd2061719ec17ba3c894c81dbde89$$aDeutsches Krebsforschungszentrum$$b1$$kDKFZ
000178646 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)35857b3e43a244ed72dae89b456adfe0$$aDeutsches Krebsforschungszentrum$$b2$$kDKFZ
000178646 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)e43f53a20835bd25906f1795558151a3$$aDeutsches Krebsforschungszentrum$$b3$$kDKFZ
000178646 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)8b63b8397312105c7a7d7e4aba379e22$$aDeutsches Krebsforschungszentrum$$b4$$kDKFZ
000178646 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)d535ac1f5937626496fb38af117c2850$$aDeutsches Krebsforschungszentrum$$b5$$kDKFZ
000178646 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)77bc493068847c689d894d2eda891c0c$$aDeutsches Krebsforschungszentrum$$b6$$kDKFZ
000178646 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)3b3ff5cc513dd71b560eb6a18e4d0c07$$aDeutsches Krebsforschungszentrum$$b7$$kDKFZ
000178646 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)5ce5a852e39ce8846d820376eb30697e$$aDeutsches Krebsforschungszentrum$$b8$$kDKFZ
000178646 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)b43076fb0a30230e4323887c0c980046$$aDeutsches Krebsforschungszentrum$$b9$$kDKFZ
000178646 9101_ $$0I:(DE-588b)2036810-0$$60000-0002-6056-9747$$aDeutsches Krebsforschungszentrum$$b10$$kDKFZ
000178646 9131_ $$0G:(DE-HGF)POF4-315$$1G:(DE-HGF)POF4-310$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vBildgebung und Radioonkologie$$x0
000178646 9141_ $$y2022
000178646 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-28
000178646 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2021-01-28
000178646 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-28
000178646 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium$$d2022-11-17$$wger
000178646 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-17
000178646 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-17
000178646 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-17
000178646 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2022-11-17
000178646 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2022-11-17
000178646 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS MED BIOL : 2021$$d2022-11-17
000178646 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-17
000178646 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2022-11-17
000178646 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2022-11-17
000178646 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2022-11-17
000178646 9202_ $$0I:(DE-He78)E040-20160331$$kE040$$lE040 Med. Physik in der Strahlentherapie$$x0
000178646 9201_ $$0I:(DE-He78)E040-20160331$$kE040$$lE040 Med. Physik in der Strahlentherapie$$x0
000178646 9201_ $$0I:(DE-He78)E010-20160331$$kE010$$lE010 Radiologie$$x1
000178646 9200_ $$0I:(DE-He78)E040-20160331$$kE040$$lE040 Med. Physik in der Strahlentherapie$$x0
000178646 980__ $$ajournal
000178646 980__ $$aVDB
000178646 980__ $$aI:(DE-He78)E040-20160331
000178646 980__ $$aI:(DE-He78)E010-20160331
000178646 980__ $$aUNRESTRICTED