001     178646
005     20240229143552.0
024 7 _ |a 10.1088/1361-6560/ac4ef8
|2 doi
024 7 _ |a pmid:35081516
|2 pmid
024 7 _ |a 0031-9155
|2 ISSN
024 7 _ |a 1361-6560
|2 ISSN
024 7 _ |a altmetric:121635897
|2 altmetric
037 _ _ |a DKFZ-2022-00175
041 _ _ |a English
082 _ _ |a 530
100 1 _ |a Weidner, Artur
|0 P:(DE-He78)323817aa87b7e7b2f343fc93e9980cfd
|b 0
|e First author
|u dkfz
245 _ _ |a An abdominal phantom with anthropomorphic organ motion and multimodal imaging contrast for MR-guided radiotherapy.
260 _ _ |a Bristol
|c 2022
|b IOP Publ.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1645449433_2246
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a #EA:E040#LA:E040# / 2022 Feb 11;67(4) 045009
520 _ _ |a Improvements in image-guided-radiotherapy (IGRT) enable accurate and precise radiotherapy treatments of moving tumors in the abdomen while simultaneously sparing healthy tissue. However, the lack of validation tools for newly developed IGRT hybrid devices such as MR-Linac is an open issue. This study presents an abdominal phantom with respiratory organ motion and multimodal imaging contrast to perform end-to-end tests in IGRT. The abdominal phantom contains anatomically shaped liver and kidney models made of Ni-DTPA and KCl-doped agarose mixtures that can be reproducibly positioned within the phantom. Organ models are wrapped in foil to avoid ion exchange with the surrounding agarose-based fatty tissue and to allow stable imaging contrast. Breathing motion is realized by a diaphragm connected to an actuator that is hydraulically controlled via a programmable logic controller (PLC). With this system, artificial and patient-specific breathing patterns can be carried out. In 1.5 and 3 T magnetic resonance imaging (MRI) and computed tomography (CT) series, diaphragm, liver and kidney motion was measured and compared to the breathing motion of a healthy male volunteer for different breathing amplitudes including shallow, normal and deep breathing. The constructed abdominal phantom demonstrated tissue-equivalent contrast in CT as well as in MRI. T1-weighted (T1w) and T2-weighted (T2w) relaxation times and CT-numbers were 552.9 ms, 48.2 ms and 48.8 HU (liver) and 950.42 ms, 79 ms and 28.2 HU (kidney), respectively. These values were stable for more than one month. Extracted breathing motion from a healthy volunteer revealed a liver to diaphragm motion ratio (LDMR) of 64.4 % and a kidney to diaphragm motion ratio (KDMR) of 30.7 %. Well-comparable values were obtained for the phantom (LDMR: 65.5 %, KDMR: 27.5 %). The abdominal phantom demonstrated anthropomorphic imaging contrast and physiological motion pattern in MRI and CT. This allows for wide use in the validation of IGRT.
536 _ _ |a 315 - Bildgebung und Radioonkologie (POF4-315)
|0 G:(DE-HGF)POF4-315
|c POF4-315
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo01.inet.dkfz-heidelberg.de
650 _ 7 |a Abdominal breathing phantom
|2 Other
650 _ 7 |a Image-guided radiotherapy
|2 Other
650 _ 7 |a anthropomorphic image contrast
|2 Other
650 _ 7 |a intrafractional breathing motion
|2 Other
650 _ 7 |a magnetic resonance-guided radiotherapy
|2 Other
700 1 _ |a Stengl, Christina
|0 P:(DE-He78)5d3fd2061719ec17ba3c894c81dbde89
|b 1
|u dkfz
700 1 _ |a Dinkel, Fabian
|0 P:(DE-He78)35857b3e43a244ed72dae89b456adfe0
|b 2
|u dkfz
700 1 _ |a Dorsch, Stefan
|0 P:(DE-He78)e43f53a20835bd25906f1795558151a3
|b 3
|u dkfz
700 1 _ |a Murillo, Carlos
|0 P:(DE-He78)8b63b8397312105c7a7d7e4aba379e22
|b 4
|u dkfz
700 1 _ |a Seeber, Steffen
|0 P:(DE-He78)d535ac1f5937626496fb38af117c2850
|b 5
|u dkfz
700 1 _ |a Gnirs, Regula
|0 P:(DE-He78)77bc493068847c689d894d2eda891c0c
|b 6
|u dkfz
700 1 _ |a Runz, Armin
|0 P:(DE-He78)3b3ff5cc513dd71b560eb6a18e4d0c07
|b 7
|u dkfz
700 1 _ |a Echner, Gernot
|0 P:(DE-He78)5ce5a852e39ce8846d820376eb30697e
|b 8
|u dkfz
700 1 _ |a Karger, Christian P
|0 P:(DE-He78)b43076fb0a30230e4323887c0c980046
|b 9
|u dkfz
700 1 _ |a Jaekel, Oliver
|0 0000-0002-6056-9747
|b 10
|e Last author
773 _ _ |a 10.1088/1361-6560/ac4ef8
|0 PERI:(DE-600)1473501-5
|n 4
|p 045009
|t Physics in medicine and biology
|v 67
|y 2022
|x 0031-9155
909 C O |p VDB
|o oai:inrepo02.dkfz.de:178646
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 0
|6 P:(DE-He78)323817aa87b7e7b2f343fc93e9980cfd
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 1
|6 P:(DE-He78)5d3fd2061719ec17ba3c894c81dbde89
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 2
|6 P:(DE-He78)35857b3e43a244ed72dae89b456adfe0
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 3
|6 P:(DE-He78)e43f53a20835bd25906f1795558151a3
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 4
|6 P:(DE-He78)8b63b8397312105c7a7d7e4aba379e22
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 5
|6 P:(DE-He78)d535ac1f5937626496fb38af117c2850
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 6
|6 P:(DE-He78)77bc493068847c689d894d2eda891c0c
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 7
|6 P:(DE-He78)3b3ff5cc513dd71b560eb6a18e4d0c07
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 8
|6 P:(DE-He78)5ce5a852e39ce8846d820376eb30697e
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 9
|6 P:(DE-He78)b43076fb0a30230e4323887c0c980046
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 10
|6 0000-0002-6056-9747
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-315
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Bildgebung und Radioonkologie
|x 0
914 1 _ |y 2022
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2021-01-28
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-28
915 _ _ |a National-Konsortium
|0 StatID:(DE-HGF)0430
|2 StatID
|d 2022-11-17
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2022-11-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2022-11-17
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PHYS MED BIOL : 2021
|d 2022-11-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-17
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2022-11-17
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2022-11-17
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2022-11-17
920 2 _ |0 I:(DE-He78)E040-20160331
|k E040
|l E040 Med. Physik in der Strahlentherapie
|x 0
920 1 _ |0 I:(DE-He78)E040-20160331
|k E040
|l E040 Med. Physik in der Strahlentherapie
|x 0
920 1 _ |0 I:(DE-He78)E010-20160331
|k E010
|l E010 Radiologie
|x 1
920 0 _ |0 I:(DE-He78)E040-20160331
|k E040
|l E040 Med. Physik in der Strahlentherapie
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)E040-20160331
980 _ _ |a I:(DE-He78)E010-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21