| Home > Publications database > Adaptive MR-Guided Stereotactic Radiotherapy is Beneficial for Ablative Treatment of Lung Tumors in High-Risk Locations. > print |
| 001 | 178677 | ||
| 005 | 20240229143553.0 | ||
| 024 | 7 | _ | |a 10.3389/fonc.2021.757031 |2 doi |
| 024 | 7 | _ | |a pmid:35087746 |2 pmid |
| 024 | 7 | _ | |a pmc:PMC8789303 |2 pmc |
| 024 | 7 | _ | |a altmetric:120689786 |2 altmetric |
| 037 | _ | _ | |a DKFZ-2022-00193 |
| 041 | _ | _ | |a English |
| 082 | _ | _ | |a 610 |
| 100 | 1 | _ | |a Regnery, Sebastian |0 P:(DE-He78)f4c0be14a7bb58948e5800ccdcbfe9bc |b 0 |e First author |u dkfz |
| 245 | _ | _ | |a Adaptive MR-Guided Stereotactic Radiotherapy is Beneficial for Ablative Treatment of Lung Tumors in High-Risk Locations. |
| 260 | _ | _ | |a Lausanne |c 2022 |b Frontiers Media |
| 336 | 7 | _ | |a article |2 DRIVER |
| 336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
| 336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1643622122_21464 |2 PUB:(DE-HGF) |
| 336 | 7 | _ | |a ARTICLE |2 BibTeX |
| 336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
| 336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
| 500 | _ | _ | |a #EA:E050#LA:E050# |
| 520 | _ | _ | |a To explore the benefit of adaptive magnetic resonance-guided stereotactic body radiotherapy (MRgSBRT) for treatment of lung tumors in different locations with a focus on ultracentral lung tumors (ULT).A prospective cohort of 21 patients with 23 primary and secondary lung tumors was analyzed. Tumors were located peripherally (N = 10), centrally (N = 2) and ultracentrally (N = 11, planning target volume (PTV) overlap with proximal bronchi, esophagus and/or pulmonary artery). All patients received MRgSBRT with gated dose delivery and risk-adapted fractionation. Before each fraction, the baseline plan was recalculated on the anatomy of the day (predicted plan). Plan adaptation was performed in 154/165 fractions (93.3%). Comparison of dose characteristics between predicted and adapted plans employed descriptive statistics and Bayesian linear multilevel models. The posterior distributions resulting from the Bayesian models are presented by the mean together with the corresponding 95% compatibility interval (CI).Plan adaptation decreased the proportion of fractions with violated planning objectives from 94% (predicted plans) to 17% (adapted plans). In most cases, inadequate PTV coverage was remedied (predicted: 86%, adapted: 13%), corresponding to a moderate increase of PTV coverage (mean +6.3%, 95% CI: [5.3-7.4%]) and biologically effective PTV doses (BED10) (BEDmin: +9.0 Gy [6.7-11.3 Gy], BEDmean: +1.4 Gy [0.8-2.1 Gy]). This benefit was smaller in larger tumors (-0.1%/10 cm³ PTV [-0.2 to -0.02%/10 cm³ PTV]) and ULT (-2.0% [-3.1 to -0.9%]). Occurrence of exceeded maximum doses inside the PTV (predicted: 21%, adapted: 4%) and violations of OAR constraints (predicted: 12%, adapted: 1%, OR: 0.14 [0.04-0.44]) was effectively reduced. OAR constraint violations almost exclusively occurred if the PTV had touched the corresponding OAR in the baseline plan (18/19, 95%).Adaptive MRgSBRT is highly recommendable for ablative treatment of lung tumors whose PTV initially contacts a sensitive OAR, such as ULT. Here, plan adaptation protects the OAR while maintaining best-possible PTV coverage. |
| 536 | _ | _ | |a 315 - Bildgebung und Radioonkologie (POF4-315) |0 G:(DE-HGF)POF4-315 |c POF4-315 |f POF IV |x 0 |
| 588 | _ | _ | |a Dataset connected to CrossRef, PubMed, , Journals: inrepo01.inet.dkfz-heidelberg.de |
| 650 | _ | 7 | |a MR-guided radiotherapy |2 Other |
| 650 | _ | 7 | |a image-guidance |2 Other |
| 650 | _ | 7 | |a magnetic resonance imaging |2 Other |
| 650 | _ | 7 | |a pulmonary cancer |2 Other |
| 650 | _ | 7 | |a radiotherapy |2 Other |
| 650 | _ | 7 | |a stereotactic body radiotherapy |2 Other |
| 700 | 1 | _ | |a Buchele, Carolin |b 1 |
| 700 | 1 | _ | |a Weykamp, Fabian |b 2 |
| 700 | 1 | _ | |a Pohl, Moritz |b 3 |
| 700 | 1 | _ | |a Hoegen, Philipp |0 P:(DE-He78)a8a8a2fe0df558db50514c1b568ca8ff |b 4 |u dkfz |
| 700 | 1 | _ | |a Eichkorn, Tanja |b 5 |
| 700 | 1 | _ | |a Held, Thomas |b 6 |
| 700 | 1 | _ | |a Ristau, Jonas |b 7 |
| 700 | 1 | _ | |a Rippke, Carolin |b 8 |
| 700 | 1 | _ | |a König, Laila |b 9 |
| 700 | 1 | _ | |a Thomas, Michael |b 10 |
| 700 | 1 | _ | |a Winter, Hauke |b 11 |
| 700 | 1 | _ | |a Adeberg, Sebastian |0 P:(DE-HGF)0 |b 12 |
| 700 | 1 | _ | |a Debus, Jürgen |0 P:(DE-He78)8714da4e45acfa36ce87c291443a9218 |b 13 |u dkfz |
| 700 | 1 | _ | |a Klüter, Sebastian |b 14 |
| 700 | 1 | _ | |a Hörner-Rieber, Juliane |0 P:(DE-He78)c59ff25b48c192ed3fd4ad3a4bc9b9c0 |b 15 |e Last author |u dkfz |
| 773 | _ | _ | |a 10.3389/fonc.2021.757031 |g Vol. 11, p. 757031 |0 PERI:(DE-600)2649216-7 |p 757031 |t Frontiers in oncology |v 11 |y 2022 |x 2234-943X |
| 909 | C | O | |o oai:inrepo02.dkfz.de:178677 |p VDB |
| 910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 0 |6 P:(DE-He78)f4c0be14a7bb58948e5800ccdcbfe9bc |
| 910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 4 |6 P:(DE-He78)a8a8a2fe0df558db50514c1b568ca8ff |
| 910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 12 |6 P:(DE-HGF)0 |
| 910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 13 |6 P:(DE-He78)8714da4e45acfa36ce87c291443a9218 |
| 910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 15 |6 P:(DE-He78)c59ff25b48c192ed3fd4ad3a4bc9b9c0 |
| 913 | 1 | _ | |a DE-HGF |b Gesundheit |l Krebsforschung |1 G:(DE-HGF)POF4-310 |0 G:(DE-HGF)POF4-315 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-300 |4 G:(DE-HGF)POF |v Bildgebung und Radioonkologie |x 0 |
| 914 | 1 | _ | |y 2022 |
| 915 | _ | _ | |a Creative Commons Attribution CC BY (No Version) |0 LIC:(DE-HGF)CCBYNV |2 V:(DE-HGF) |b DOAJ |d 2021-01-27 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2021-01-27 |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2021-01-27 |
| 915 | _ | _ | |a Article Processing Charges |0 StatID:(DE-HGF)0561 |2 StatID |d 2021-01-27 |
| 915 | _ | _ | |a Fees |0 StatID:(DE-HGF)0700 |2 StatID |d 2021-01-27 |
| 915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b FRONT ONCOL : 2021 |d 2022-11-08 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2022-11-08 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2022-11-08 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |d 2021-05-11T13:25:45Z |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |d 2021-05-11T13:25:45Z |
| 915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b DOAJ : Blind peer review |d 2021-05-11T13:25:45Z |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2022-11-08 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2022-11-08 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1110 |2 StatID |b Current Contents - Clinical Medicine |d 2022-11-08 |
| 915 | _ | _ | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |b FRONT ONCOL : 2021 |d 2022-11-08 |
| 920 | 2 | _ | |0 I:(DE-He78)E050-20160331 |k E050 |l E050 KKE Strahlentherapie |x 0 |
| 920 | 1 | _ | |0 I:(DE-He78)E050-20160331 |k E050 |l E050 KKE Strahlentherapie |x 0 |
| 920 | 0 | _ | |0 I:(DE-He78)E050-20160331 |k E050 |l E050 KKE Strahlentherapie |x 0 |
| 980 | _ | _ | |a journal |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a I:(DE-He78)E050-20160331 |
| 980 | _ | _ | |a UNRESTRICTED |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|