Home > Publications database > Simple cardiovascular risk stratification by replacing total serum cholesterol with anthropometric measures: The MORGAM prospective cohort project. > print |
001 | 178793 | ||
005 | 20240229143556.0 | ||
024 | 7 | _ | |a 10.1016/j.pmedr.2022.101700 |2 doi |
024 | 7 | _ | |a pmid:35141116 |2 pmid |
024 | 7 | _ | |a pmc:PMC8814644 |2 pmc |
024 | 7 | _ | |a altmetric:122839834 |2 altmetric |
037 | _ | _ | |a DKFZ-2022-00272 |
041 | _ | _ | |a English |
082 | _ | _ | |a 610 |
100 | 1 | _ | |a Rosberg, Victoria |b 0 |
245 | _ | _ | |a Simple cardiovascular risk stratification by replacing total serum cholesterol with anthropometric measures: The MORGAM prospective cohort project. |
260 | _ | _ | |a Amsterdam [u.a.] |c 2022 |b Elsevier |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1644839292_25510 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a To assess whether anthropometric measures (body mass index [BMI], waist-hip ratio [WHR], and estimated fat mass [EFM]) are independently associated with major adverse cardiovascular events (MACE), and to assess their added prognostic value compared with serum total-cholesterol. The study population comprised 109,509 individuals (53% men) from the MORGAM-Project, aged 19-97 years, without established cardiovascular disease, and not on antihypertensive treatment. While BMI was reported in all, WHR and EFM were reported in ∼52,000 participants. Prognostic importance of anthropometric measurements and total-cholesterol was evaluated using adjusted Cox proportional-hazards regression, logistic regression, area under the receiver-operating-characteristic curve (AUCROC), and net reclassification improvement (NRI). The primary endpoint was MACE, a composite of stroke, myocardial infarction, or death from coronary heart disease. Age interacted significantly with anthropometric measures and total-cholesterol on MACE (P ≤ 0.003), and therefore age-stratified analyses (<50 versus ≥ 50 years) were performed. BMI, WHR, EFM, and total-cholesterol were independently associated with MACE (P ≤ 0.003) and resulted in significantly positive NRI when added to age, sex, smoking status, and systolic blood pressure. Only total-cholesterol increased discrimination ability (AUCROC difference; P < 0.001). In subjects < 50 years, the prediction model with total-cholesterol was superior to the model including BMI, but not superior to models containing WHR or EFM, while in those ≥ 50 years, the model with total-cholesterol was superior to all models containing anthropometric variables, whether assessed individually or combined. We found a potential role for replacing total-cholesterol with anthropometric measures for MACE-prediction among individuals < 50 years when laboratory measurements are unavailable, but not among those ≥ 50 years. |
536 | _ | _ | |a 313 - Krebsrisikofaktoren und Prävention (POF4-313) |0 G:(DE-HGF)POF4-313 |c POF4-313 |f POF IV |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef, PubMed, , Journals: inrepo01.inet.dkfz-heidelberg.de |
650 | _ | 7 | |a ACM, all-cause mortality |2 Other |
650 | _ | 7 | |a ASCVD, atherosclerotic cardiovascular disease |2 Other |
650 | _ | 7 | |a AUCROC, area under the receiver-operating-characteristic curve |2 Other |
650 | _ | 7 | |a Adipose tissue |2 Other |
650 | _ | 7 | |a Assessment, risk |2 Other |
650 | _ | 7 | |a BMI, body mass index |2 Other |
650 | _ | 7 | |a BP, blood pressure |2 Other |
650 | _ | 7 | |a Body mass index |2 Other |
650 | _ | 7 | |a CEP, composite cardiovascular endpoint |2 Other |
650 | _ | 7 | |a CI, confidence interval |2 Other |
650 | _ | 7 | |a CV, cardiovascular |2 Other |
650 | _ | 7 | |a CVD, cardiovascular disease |2 Other |
650 | _ | 7 | |a CVM, cardiovascular mortality |2 Other |
650 | _ | 7 | |a Cardiovascular diseases |2 Other |
650 | _ | 7 | |a Chol, serum total cholesterol |2 Other |
650 | _ | 7 | |a Cholesterol |2 Other |
650 | _ | 7 | |a DBP, diastolic blood pressure |2 Other |
650 | _ | 7 | |a EFM, estimated fat mass |2 Other |
650 | _ | 7 | |a HDL-cholesterol, high density lipoprotein cholesterol |2 Other |
650 | _ | 7 | |a HR, hazard ratio |2 Other |
650 | _ | 7 | |a IQR, interquartile range |2 Other |
650 | _ | 7 | |a MACE, major adverse cardiovascular events |2 Other |
650 | _ | 7 | |a MBP, mean blood pressure |2 Other |
650 | _ | 7 | |a MONICA, Multi-national MONItoring of Trends and Determinants in CArdiovascular Disease |2 Other |
650 | _ | 7 | |a MORGAM, MOnica, Risk, Genetics, Archiving and Monograph |2 Other |
650 | _ | 7 | |a NRI, net reclassification improvement |2 Other |
650 | _ | 7 | |a NS, non-significant |2 Other |
650 | _ | 7 | |a PP, pulse pressure |2 Other |
650 | _ | 7 | |a SBP, systolic blood pressure |2 Other |
650 | _ | 7 | |a SCORE, Systematic COronary Risk Evaluation |2 Other |
650 | _ | 7 | |a WHR, waist-hip ratio |2 Other |
650 | _ | 7 | |a Waist-hip ratio |2 Other |
650 | _ | 7 | |a cNRI, continuous net reclassification improvement |2 Other |
700 | 1 | _ | |a Vishram-Nielsen, Julie Kk |b 1 |
700 | 1 | _ | |a Kristensen, Anna M Dyrvig |b 2 |
700 | 1 | _ | |a Pareek, Manan |b 3 |
700 | 1 | _ | |a Sehested, Thomas S G |b 4 |
700 | 1 | _ | |a Nilsson, Peter M |b 5 |
700 | 1 | _ | |a Linneberg, Allan |b 6 |
700 | 1 | _ | |a Palmieri, Luigi |b 7 |
700 | 1 | _ | |a Giampaoli, Simona |b 8 |
700 | 1 | _ | |a Donfrancesco, Chiara |b 9 |
700 | 1 | _ | |a Kee, Frank |b 10 |
700 | 1 | _ | |a Mancia, Giuseppe |b 11 |
700 | 1 | _ | |a Cesana, Giancarlo |b 12 |
700 | 1 | _ | |a Veronesi, Giovanni |b 13 |
700 | 1 | _ | |a Grassi, Guido |b 14 |
700 | 1 | _ | |a Kuulasmaa, Kari |b 15 |
700 | 1 | _ | |a Salomaa, Veikko |b 16 |
700 | 1 | _ | |a Palosaari, Tarja |b 17 |
700 | 1 | _ | |a Sans, Susana |b 18 |
700 | 1 | _ | |a Ferrieres, Jean |b 19 |
700 | 1 | _ | |a Dallongeville, Jean |b 20 |
700 | 1 | _ | |a Söderberg, Stefan |b 21 |
700 | 1 | _ | |a Moitry, Marie |b 22 |
700 | 1 | _ | |a Drygas, Wojciech |b 23 |
700 | 1 | _ | |a Tamosiunas, Abdonas |b 24 |
700 | 1 | _ | |a Peters, Annette |b 25 |
700 | 1 | _ | |a Brenner, Hermann |0 P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2 |b 26 |u dkfz |
700 | 1 | _ | |a Schöttker, Ben |0 P:(DE-He78)c67a12496b8aac150c0eef888d808d46 |b 27 |u dkfz |
700 | 1 | _ | |a Grimsgaard, Sameline |b 28 |
700 | 1 | _ | |a Biering-Sørensen, Tor |b 29 |
700 | 1 | _ | |a Olsen, Michael H |b 30 |
773 | _ | _ | |a 10.1016/j.pmedr.2022.101700 |g Vol. 26, p. 101700 - |0 PERI:(DE-600)2785569-7 |p 101700 |t Preventive Medicine Reports |v 26 |y 2022 |x 2211-3355 |
909 | C | O | |o oai:inrepo02.dkfz.de:178793 |p VDB |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 26 |6 P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2 |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 27 |6 P:(DE-He78)c67a12496b8aac150c0eef888d808d46 |
913 | 1 | _ | |a DE-HGF |b Gesundheit |l Krebsforschung |1 G:(DE-HGF)POF4-310 |0 G:(DE-HGF)POF4-313 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-300 |4 G:(DE-HGF)POF |v Krebsrisikofaktoren und Prävention |x 0 |
914 | 1 | _ | |y 2022 |
915 | _ | _ | |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND (No Version) |0 LIC:(DE-HGF)CCBYNCNDNV |2 V:(DE-HGF) |b DOAJ |d 2020-09-12 |
915 | _ | _ | |a Article Processing Charges |0 StatID:(DE-HGF)0561 |2 StatID |d 2020-09-12 |
915 | _ | _ | |a Fees |0 StatID:(DE-HGF)0700 |2 StatID |d 2020-09-12 |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b PREV MED REP : 2021 |d 2022-11-18 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2022-11-18 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2022-11-18 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |d 2022-08-09T10:54:20Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |d 2022-08-09T10:54:20Z |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b DOAJ : Blind peer review |d 2022-08-09T10:54:20Z |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2022-11-18 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2022-11-18 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1110 |2 StatID |b Current Contents - Clinical Medicine |d 2022-11-18 |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |d 2022-11-18 |
920 | 1 | _ | |0 I:(DE-He78)C070-20160331 |k C070 |l C070 Klinische Epidemiologie und Alternf. |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-He78)C070-20160331 |
980 | _ | _ | |a UNRESTRICTED |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|