Home > Publications database > Serum markers of biological ageing provide long-term prediction of life expectancy-a longitudinal analysis in middle-aged and older German adults. > print |
001 | 178822 | ||
005 | 20240229143557.0 | ||
024 | 7 | _ | |a 10.1093/ageing/afab271 |2 doi |
024 | 7 | _ | |a pmid:35150586 |2 pmid |
024 | 7 | _ | |a 0002-0729 |2 ISSN |
024 | 7 | _ | |a 1468-2834 |2 ISSN |
024 | 7 | _ | |a altmetric:122968763 |2 altmetric |
037 | _ | _ | |a DKFZ-2022-00286 |
041 | _ | _ | |a English |
082 | _ | _ | |a 610 |
100 | 1 | _ | |a Srour, Bernard |0 P:(DE-He78)0644671d309776d45e0fc705d1156cac |b 0 |e First author |u dkfz |
245 | _ | _ | |a Serum markers of biological ageing provide long-term prediction of life expectancy-a longitudinal analysis in middle-aged and older German adults. |
260 | _ | _ | |a Oxford |c 2022 |b Oxford Univ. Press |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1644839234_25508 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
500 | _ | _ | |a #EA:C020#LA:C020# |
520 | _ | _ | |a lifestyle behaviours and chronic co-morbidities are leading risk factors for premature mortality and collectively predict wide variability in individual life expectancy (LE). We investigated whether a pre-selected panel of five serum markers of biological ageing could improve predicting the long-term mortality risk and LE in middle-aged and older women and men.we conducted a case-cohort study (n = 5,789 among which there were 2,571 deaths) within the European Prospective Investigation into Cancer-Heidelberg cohort, a population cohort of middle-aged and older individuals, followed over a median duration of 18 years. Gompertz models were used to compute multi-adjusted associations of growth differentiation factor-15, N-terminal pro-brain natriuretic peptide, glycated haemoglobin A1c, C-reactive protein and cystatin-C with mortality risk. Areas under estimated Gompertz survival curves were used to estimate the LE of individuals using a model with lifestyle-related risk factors only (smoking history, body mass index, waist circumference, alcohol, physical inactivity, diabetes and hypertension), or with lifestyle factors plus the ageing-related markers.a model including only lifestyle-related factors predicted a LE difference of 16.8 [95% confidence interval: 15.9; 19.1] years in men and 9.87 [9.20; 13.1] years in women aged ≥60 years by comparing individuals in the highest versus the lowest quintiles of estimated mortality risk. Including the ageing-related biomarkers in the model increased these differences up to 22.7 [22.3; 26.9] years in men and 14.00 [12.9; 18.2] years in women.serum markers of ageing are potentially strong predictors for long-term mortality risk in a general population sample of older and middle-aged individuals and may help to identify individuals at higher risk of premature death, who could benefit from interventions to prevent further ageing-related health declines. |
536 | _ | _ | |a 313 - Krebsrisikofaktoren und Prävention (POF4-313) |0 G:(DE-HGF)POF4-313 |c POF4-313 |f POF IV |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef, PubMed, , Journals: inrepo01.inet.dkfz-heidelberg.de |
650 | _ | 7 | |a ageing biomarkers |2 Other |
650 | _ | 7 | |a biological ageing |2 Other |
650 | _ | 7 | |a life expectancy |2 Other |
650 | _ | 7 | |a lifestyle factors |2 Other |
650 | _ | 7 | |a prevention older people |2 Other |
700 | 1 | _ | |a Hynes, Lucas Cory |0 P:(DE-He78)f55fe2dee9fdef0b4db17187de23a9bf |b 1 |u dkfz |
700 | 1 | _ | |a Johnson, Theron |0 P:(DE-He78)79ab945544e5bc017a2317b6146ed3aa |b 2 |u dkfz |
700 | 1 | _ | |a Kühn, Tilman |0 P:(DE-He78)0907a10ba1dc8f53f04907f54f6fdcfe |b 3 |
700 | 1 | _ | |a Katzke, Verena A |0 P:(DE-He78)fb68a9386399d72d84f7f34cfc6048b4 |b 4 |u dkfz |
700 | 1 | _ | |a Kaaks, Rudolf |0 P:(DE-He78)4b2dc91c9d1ac33a1c0e0777d0c1697a |b 5 |e Last author |u dkfz |
773 | _ | _ | |a 10.1093/ageing/afab271 |g Vol. 51, no. 2, p. afab271 |0 PERI:(DE-600)2065766-3 |n 2 |p afab271 |t Age & ageing |v 51 |y 2022 |x 0002-0729 |
909 | C | O | |o oai:inrepo02.dkfz.de:178822 |p VDB |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 0 |6 P:(DE-He78)0644671d309776d45e0fc705d1156cac |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 1 |6 P:(DE-He78)f55fe2dee9fdef0b4db17187de23a9bf |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 2 |6 P:(DE-He78)79ab945544e5bc017a2317b6146ed3aa |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 3 |6 P:(DE-He78)0907a10ba1dc8f53f04907f54f6fdcfe |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 4 |6 P:(DE-He78)fb68a9386399d72d84f7f34cfc6048b4 |
910 | 1 | _ | |a Deutsches Krebsforschungszentrum |0 I:(DE-588b)2036810-0 |k DKFZ |b 5 |6 P:(DE-He78)4b2dc91c9d1ac33a1c0e0777d0c1697a |
913 | 1 | _ | |a DE-HGF |b Gesundheit |l Krebsforschung |1 G:(DE-HGF)POF4-310 |0 G:(DE-HGF)POF4-313 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-300 |4 G:(DE-HGF)POF |v Krebsrisikofaktoren und Prävention |x 0 |
914 | 1 | _ | |y 2022 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2021-01-30 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1190 |2 StatID |b Biological Abstracts |d 2021-01-30 |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2021-01-30 |
915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |d 2022-11-08 |w ger |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b AGE AGEING : 2021 |d 2022-11-08 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2022-11-08 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2022-11-08 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |d 2022-11-08 |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |d 2022-11-08 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2022-11-08 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2022-11-08 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |d 2022-11-08 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1110 |2 StatID |b Current Contents - Clinical Medicine |d 2022-11-08 |
915 | _ | _ | |a IF >= 10 |0 StatID:(DE-HGF)9910 |2 StatID |b AGE AGEING : 2021 |d 2022-11-08 |
920 | 2 | _ | |0 I:(DE-He78)C020-20160331 |k C020 |l C020 Epidemiologie von Krebs |x 0 |
920 | 1 | _ | |0 I:(DE-He78)C020-20160331 |k C020 |l C020 Epidemiologie von Krebs |x 0 |
920 | 0 | _ | |0 I:(DE-He78)C020-20160331 |k C020 |l C020 Epidemiologie von Krebs |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-He78)C020-20160331 |
980 | _ | _ | |a UNRESTRICTED |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|