000178888 001__ 178888
000178888 005__ 20240229143558.0
000178888 0247_ $$2doi$$a10.1097/RLI.0000000000000861
000178888 0247_ $$2pmid$$apmid:35184102
000178888 0247_ $$2ISSN$$a0020-9996
000178888 0247_ $$2ISSN$$a1536-0210
000178888 0247_ $$2altmetric$$aaltmetric:129702050
000178888 037__ $$aDKFZ-2022-00323
000178888 041__ $$aEnglish
000178888 082__ $$a610
000178888 1001_ $$aSchuppert, Christopher$$b0
000178888 245__ $$aWhole-Body Magnetic Resonance Imaging in the Large Population-Based German National Cohort Study: Predictive Capability of Automated Image Quality Assessment for Protocol Repetitions.
000178888 260__ $$a[s.l.]$$bOvid$$c2022
000178888 3367_ $$2DRIVER$$aarticle
000178888 3367_ $$2DataCite$$aOutput Types/Journal article
000178888 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1655974354_11773
000178888 3367_ $$2BibTeX$$aARTICLE
000178888 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000178888 3367_ $$00$$2EndNote$$aJournal Article
000178888 500__ $$a2022 Jul 1;57(7):478-487
000178888 520__ $$aReproducible image quality is of high relevance for large cohort studies and can be challenging for magnetic resonance imaging (MRI). Automated image quality assessment may contribute to conducting radiologic studies effectively.The aims of this study were to assess protocol repetition frequency in population-based whole-body MRI along with its effect on examination time and to examine the applicability of automated image quality assessment for predicting decision-making regarding repeated acquisitions.All participants enrolled in the prospective, multicenter German National Cohort (NAKO) study who underwent whole-body MRI at 1 of 5 sites from 2014 to 2016 were included in this analysis (n = 11,347). A standardized examination program of 12 protocols was used. Acquisitions were carried out by certified radiologic technologists, who were authorized to repeat protocols based on their visual perception of image quality. Eleven image quality parameters were derived fully automatically from the acquired images, and their discrimination ability regarding baseline acquisitions and repetitions was tested.At least 1 protocol was repeated in 12% (n = 1359) of participants, and more than 1 protocol in 1.6% (n = 181). The repetition frequency differed across protocols (P < 0.001), imaging sites (P < 0.001), and over the study period (P < 0.001). The mean total scan time was 62.6 minutes in participants without and 67.4 minutes in participants with protocol repetitions (mean difference, 4.8 minutes; 95% confidence interval, 4.5-5.2 minutes). Ten of the automatically derived image quality parameters were individually retrospectively predictive for the repetition of particular protocols; for instance, 'signal-to-noise ratio' alone provided an area under the curve of 0.65 (P < 0.001) for repetition of the Cardio Cine SSFP SAX protocol. Combinations generally improved prediction ability, as exemplified by 'image sharpness' plus 'foreground ratio' yielding an area under the curve of 0.89 (P < 0.001) for repetition of the Neuro T1w 3D MPRAGE protocol, versus 0.85 (P < 0.001) and 0.68 (P < 0.001) as individual parameters.Magnetic resonance imaging protocol repetitions were necessary in approximately 12% of scans even in the highly standardized setting of a large cohort study. Automated image quality assessment shows predictive value for the technologists' decision to perform protocol repetitions and has the potential to improve imaging efficiency.
000178888 536__ $$0G:(DE-HGF)POF4-313$$a313 - Krebsrisikofaktoren und Prävention (POF4-313)$$cPOF4-313$$fPOF IV$$x0
000178888 588__ $$aDataset connected to CrossRef, PubMed, , Journals: inrepo01.inet.dkfz-heidelberg.de
000178888 7001_ $$avon Krüchten, Ricarda$$b1
000178888 7001_ $$aHirsch, Jochen G$$b2
000178888 7001_ $$aRospleszcz, Susanne$$b3
000178888 7001_ $$aHoinkiss, Daniel C$$b4
000178888 7001_ $$aSelder, Sonja$$b5
000178888 7001_ $$aKöhn, Alexander$$b6
000178888 7001_ $$avon Stackelberg, Oyunbileg$$b7
000178888 7001_ $$aPeters, Annette$$b8
000178888 7001_ $$aVölzke, Henry$$b9
000178888 7001_ $$aKröncke, Thomas$$b10
000178888 7001_ $$aNiendorf, Thoralf$$b11
000178888 7001_ $$aForsting, Michael$$b12
000178888 7001_ $$aHosten, Norbert$$b13
000178888 7001_ $$aHendel, Thomas$$b14
000178888 7001_ $$aPischon, Tobias$$b15
000178888 7001_ $$aJöckel, Karl-Heinz$$b16
000178888 7001_ $$0P:(DE-He78)4b2dc91c9d1ac33a1c0e0777d0c1697a$$aKaaks, Rudolf$$b17$$udkfz
000178888 7001_ $$aBamberg, Fabian$$b18
000178888 7001_ $$aKauczor, Hans-Ulrich$$b19
000178888 7001_ $$aGünther, Matthias$$b20
000178888 7001_ $$aSchlett, Christopher L$$b21
000178888 7001_ $$aInvestigators, German National Cohort MRI Study$$b22$$eCollaboration Author
000178888 773__ $$0PERI:(DE-600)2041543-6$$a10.1097/RLI.0000000000000861$$gVol. Publish Ahead of Print$$n7$$p478-487$$tInvestigative radiology$$v57$$x0020-9996$$y2022
000178888 909CO $$ooai:inrepo02.dkfz.de:178888$$pVDB
000178888 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)4b2dc91c9d1ac33a1c0e0777d0c1697a$$aDeutsches Krebsforschungszentrum$$b17$$kDKFZ
000178888 9131_ $$0G:(DE-HGF)POF4-313$$1G:(DE-HGF)POF4-310$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vKrebsrisikofaktoren und Prävention$$x0
000178888 9141_ $$y2022
000178888 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-27
000178888 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2021-01-27
000178888 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-27
000178888 915__ $$0StatID:(DE-HGF)0410$$2StatID$$aAllianz-Lizenz$$d2022-11-29$$wger
000178888 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-29
000178888 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-29
000178888 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-29
000178888 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2022-11-29
000178888 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine$$d2022-11-29
000178888 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2022-11-29
000178888 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bINVEST RADIOL : 2021$$d2022-11-29
000178888 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-29
000178888 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bINVEST RADIOL : 2021$$d2022-11-29
000178888 9201_ $$0I:(DE-He78)C020-20160331$$kC020$$lC020 Epidemiologie von Krebs$$x0
000178888 980__ $$ajournal
000178888 980__ $$aVDB
000178888 980__ $$aI:(DE-He78)C020-20160331
000178888 980__ $$aUNRESTRICTED