001     178958
005     20240229143601.0
024 7 _ |a 10.1007/s00125-022-05652-2
|2 doi
024 7 _ |a pmid:35169870
|2 pmid
024 7 _ |a 0012-186X
|2 ISSN
024 7 _ |a 1432-0428
|2 ISSN
024 7 _ |a altmetric:123157957
|2 altmetric
037 _ _ |a DKFZ-2022-00374
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Fraszczyk, Eliza
|b 0
245 _ _ |a Epigenome-wide association study of incident type 2 diabetes: a meta-analysis of five prospective European cohorts.
260 _ _ |a Heidelberg
|c 2022
|b Springer
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1651579842_6246
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a 2022 May;65(5):763-776
520 _ _ |a Type 2 diabetes is a complex metabolic disease with increasing prevalence worldwide. Improving the prediction of incident type 2 diabetes using epigenetic markers could help tailor prevention efforts to those at the highest risk. The aim of this study was to identify predictive methylation markers for incident type 2 diabetes by combining epigenome-wide association study (EWAS) results from five prospective European cohorts.We conducted a meta-analysis of EWASs in blood collected 7-10 years prior to type 2 diabetes diagnosis. DNA methylation was measured with Illumina Infinium Methylation arrays. A total of 1250 cases and 1950 controls from five longitudinal cohorts were included: Doetinchem, ESTHER, KORA1, KORA2 and EPIC-Norfolk. Associations between DNA methylation and incident type 2 diabetes were examined using robust linear regression with adjustment for potential confounders. Inverse-variance fixed-effects meta-analysis of cohort-level individual CpG EWAS estimates was performed using METAL. The methylGSA R package was used for gene set enrichment analysis. Confirmation of genome-wide significant CpG sites was performed in a cohort of Indian Asians (LOLIPOP, UK).The meta-analysis identified 76 CpG sites that were differentially methylated in individuals with incident type 2 diabetes compared with control individuals (p values <1.1 × 10-7). Sixty-four out of 76 (84.2%) CpG sites were confirmed by directionally consistent effects and p values <0.05 in an independent cohort of Indian Asians. However, on adjustment for baseline BMI only four CpG sites remained genome-wide significant, and addition of the 76 CpG methylation risk score to a prediction model including established predictors of type 2 diabetes (age, sex, BMI and HbA1c) showed no improvement (AUC 0.757 vs 0.753). Gene set enrichment analysis of the full epigenome-wide results clearly showed enrichment of processes linked to insulin signalling, lipid homeostasis and inflammation.By combining results from five European cohorts, and thus significantly increasing study sample size, we identified 76 CpG sites associated with incident type 2 diabetes. Replication of 64 CpGs in an independent cohort of Indian Asians suggests that the association between DNA methylation levels and incident type 2 diabetes is robust and independent of ethnicity. Our data also indicate that BMI partly explains the association between DNA methylation and incident type 2 diabetes. Further studies are required to elucidate the underlying biological mechanisms and to determine potential causal roles of the differentially methylated CpG sites in type 2 diabetes development.
536 _ _ |a 313 - Krebsrisikofaktoren und Prävention (POF4-313)
|0 G:(DE-HGF)POF4-313
|c POF4-313
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo01.inet.dkfz-heidelberg.de
650 _ 7 |a Biomarkers
|2 Other
650 _ 7 |a DNA methylation
|2 Other
650 _ 7 |a Epigenetics
|2 Other
650 _ 7 |a Epigenome-wide association studies
|2 Other
650 _ 7 |a Meta-analysis
|2 Other
650 _ 7 |a Prediction
|2 Other
650 _ 7 |a Prospective studies
|2 Other
650 _ 7 |a Type 2 diabetes
|2 Other
700 1 _ |a Spijkerman, Annemieke M W
|b 1
700 1 _ |a Zhang, Yan
|0 P:(DE-He78)d19149dd97b17ce55e70abd2f9e64d3d
|b 2
700 1 _ |a Brandmaier, Stefan
|b 3
700 1 _ |a Day, Felix R
|b 4
700 1 _ |a Zhou, Li
|b 5
700 1 _ |a Wackers, Paul
|b 6
700 1 _ |a Dollé, Martijn E T
|b 7
700 1 _ |a Bloks, Vincent W
|b 8
700 1 _ |a Gào, Xīn
|0 P:(DE-He78)8218df9f6f41792399cd3a29b587e4e7
|b 9
|u dkfz
700 1 _ |a Gieger, Christian
|b 10
700 1 _ |a Kooner, Jaspal
|b 11
700 1 _ |a Kriebel, Jennifer
|b 12
700 1 _ |a Picavet, H Susan J
|b 13
700 1 _ |a Rathmann, Wolfgang
|b 14
700 1 _ |a Schöttker, Ben
|0 P:(DE-He78)c67a12496b8aac150c0eef888d808d46
|b 15
|u dkfz
700 1 _ |a Loh, Marie
|b 16
700 1 _ |a Verschuren, W M Monique
|b 17
700 1 _ |a van Vliet-Ostaptchouk, Jana V
|b 18
700 1 _ |a Wareham, Nicholas J
|b 19
700 1 _ |a Chambers, John C
|b 20
700 1 _ |a Ong, Ken K
|b 21
700 1 _ |a Grallert, Harald
|b 22
700 1 _ |a Brenner, Hermann
|0 P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2
|b 23
|u dkfz
700 1 _ |a Luijten, Mirjam
|b 24
700 1 _ |a Snieder, Harold
|b 25
773 _ _ |a 10.1007/s00125-022-05652-2
|0 PERI:(DE-600)1458993-X
|n 5
|p 763-776
|t Diabetologia
|v 65
|y 2022
|x 0012-186X
909 C O |p VDB
|o oai:inrepo02.dkfz.de:178958
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 2
|6 P:(DE-He78)d19149dd97b17ce55e70abd2f9e64d3d
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 9
|6 P:(DE-He78)8218df9f6f41792399cd3a29b587e4e7
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 15
|6 P:(DE-He78)c67a12496b8aac150c0eef888d808d46
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 23
|6 P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-313
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Krebsrisikofaktoren und Prävention
|x 0
914 1 _ |y 2022
915 _ _ |a DEAL Springer
|0 StatID:(DE-HGF)3002
|2 StatID
|d 2021-02-02
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2021-02-02
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-02-02
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b DIABETOLOGIA : 2021
|d 2022-11-08
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-08
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-08
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-08
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-08
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2022-11-08
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
|d 2022-11-08
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2022-11-08
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b DIABETOLOGIA : 2021
|d 2022-11-08
920 1 _ |0 I:(DE-He78)C070-20160331
|k C070
|l C070 Klinische Epidemiologie und Alternf.
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)C070-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21