000179063 001__ 179063 000179063 005__ 20240229145531.0 000179063 0247_ $$2doi$$a10.3389/fneur.2022.758126 000179063 0247_ $$2pmid$$apmid:35250805 000179063 0247_ $$2pmc$$apmc:PMC8894319 000179063 037__ $$aDKFZ-2022-00441 000179063 041__ $$aEnglish 000179063 082__ $$a610 000179063 1001_ $$aSato, Taku$$b0 000179063 245__ $$aCorrelation Between Thrombus Signal Intensity and Aneurysm Wall Thickness in Partially Thrombosed Intracranial Aneurysms Using 7T Magnetization-Prepared Rapid Acquisition Gradient Echo Magnetic Resonance Imaging. 000179063 260__ $$aLausanne$$bFrontiers Research Foundation$$c2022 000179063 3367_ $$2DRIVER$$aarticle 000179063 3367_ $$2DataCite$$aOutput Types/Journal article 000179063 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1646821983_1986 000179063 3367_ $$2BibTeX$$aARTICLE 000179063 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000179063 3367_ $$00$$2EndNote$$aJournal Article 000179063 520__ $$aThe objective of this study is to investigate the relationship between the thrombus signal intensity and aneurysm wall thickness in partially thrombosed intracranial aneurysms in vivo with magnetization-prepared rapid acquisition gradient echo (MPRAGE) taken using 7T magnetic resonance imaging (MRI) and correlate the findings to wall instability.Sixteen partially thrombosed intracranial aneurysms were evaluated using a 7T whole-body MR system with nonenhanced MPRAGE. To normalize the thrombus signal intensity, its highest signal intensity was compared to that of the anterior corpus callosum of the same subject, and the signal intensity ratio was calculated. The correlation between the thrombus signal intensity ratio and the thickness of the aneurysm wall was analyzed. Furthermore, aneurysmal histopathological specimens from six tissue samples were compared with radiological findings to detect any correlation.The mean thrombus signal intensity ratio was 0.57 (standard error of the mean [SEM] 0.06, range 0.25-1.01). The mean thickness of the aneurysm wall was 1.25 (SEM 0.08, range 0.84-1.55) mm. The thrombus signal intensity ratio significantly correlated with the aneurysm wall thickness (p < 0.01). The aneurysm walls with the high thrombus signal intensity ratio were significantly thicker. In histopathological examinations, three patients with a hypointense thrombus had fewer macrophages infiltrating the thrombus and a thin degenerated aneurysmal wall. In contrast, three patients with a hyperintense thrombus had abundant macrophages infiltrating the thrombus.The thrombus signal intensity ratio in partially thrombosed intracranial aneurysms correlated with aneurysm wall thickness and histologic features, indicating wall instability. 000179063 536__ $$0G:(DE-HGF)POF4-315$$a315 - Bildgebung und Radioonkologie (POF4-315)$$cPOF4-315$$fPOF IV$$x0 000179063 588__ $$aDataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de 000179063 650_7 $$2Other$$a7T magnetic resonance imaging 000179063 650_7 $$2Other$$aaneurysm wall 000179063 650_7 $$2Other$$amagnetization-prepared rapid acquisition gradient echo 000179063 650_7 $$2Other$$apartially thrombosed intracranial aneurysm 000179063 650_7 $$2Other$$athrombus 000179063 7001_ $$aMatsushige, Toshinori$$b1 000179063 7001_ $$aChen, Bixia$$b2 000179063 7001_ $$aGembruch, Oliver$$b3 000179063 7001_ $$aDammann, Philipp$$b4 000179063 7001_ $$aJabbarli, Ramazan$$b5 000179063 7001_ $$aForsting, Michael$$b6 000179063 7001_ $$aJunker, Andreas$$b7 000179063 7001_ $$aMaderwald, Stefan$$b8 000179063 7001_ $$aQuick, Harald H$$b9 000179063 7001_ $$0P:(DE-He78)022611a2317e4de40fd912e0a72293a8$$aLadd, Mark E$$b10$$udkfz 000179063 7001_ $$aSure, Ulrich$$b11 000179063 7001_ $$aWrede, Karsten H$$b12 000179063 773__ $$0PERI:(DE-600)2564214-5$$a10.3389/fneur.2022.758126$$gVol. 13, p. 758126$$p758126$$tFrontiers in neurology$$v13$$x1664-2295$$y2022 000179063 909CO $$ooai:inrepo02.dkfz.de:179063$$pVDB 000179063 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)022611a2317e4de40fd912e0a72293a8$$aDeutsches Krebsforschungszentrum$$b10$$kDKFZ 000179063 9131_ $$0G:(DE-HGF)POF4-315$$1G:(DE-HGF)POF4-310$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vBildgebung und Radioonkologie$$x0 000179063 9141_ $$y2022 000179063 915__ $$0LIC:(DE-HGF)CCBYNV$$2V:(DE-HGF)$$aCreative Commons Attribution CC BY (No Version)$$bDOAJ$$d2021-01-28 000179063 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-28 000179063 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-28 000179063 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2021-01-28 000179063 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2021-01-28 000179063 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bFRONT NEUROL : 2021$$d2022-11-18 000179063 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-18 000179063 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-18 000179063 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2021-05-11T13:11:28Z 000179063 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2021-05-11T13:11:28Z 000179063 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review$$d2021-05-11T13:11:28Z 000179063 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-18 000179063 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-18 000179063 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2022-11-18 000179063 9201_ $$0I:(DE-He78)E020-20160331$$kE020$$lE020 Med. Physik in der Radiologie$$x0 000179063 980__ $$ajournal 000179063 980__ $$aVDB 000179063 980__ $$aI:(DE-He78)E020-20160331 000179063 980__ $$aUNRESTRICTED