000179063 001__ 179063
000179063 005__ 20240229145531.0
000179063 0247_ $$2doi$$a10.3389/fneur.2022.758126
000179063 0247_ $$2pmid$$apmid:35250805
000179063 0247_ $$2pmc$$apmc:PMC8894319
000179063 037__ $$aDKFZ-2022-00441
000179063 041__ $$aEnglish
000179063 082__ $$a610
000179063 1001_ $$aSato, Taku$$b0
000179063 245__ $$aCorrelation Between Thrombus Signal Intensity and Aneurysm Wall Thickness in Partially Thrombosed Intracranial Aneurysms Using 7T Magnetization-Prepared Rapid Acquisition Gradient Echo Magnetic Resonance Imaging.
000179063 260__ $$aLausanne$$bFrontiers Research Foundation$$c2022
000179063 3367_ $$2DRIVER$$aarticle
000179063 3367_ $$2DataCite$$aOutput Types/Journal article
000179063 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1646821983_1986
000179063 3367_ $$2BibTeX$$aARTICLE
000179063 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000179063 3367_ $$00$$2EndNote$$aJournal Article
000179063 520__ $$aThe objective of this study is to investigate the relationship between the thrombus signal intensity and aneurysm wall thickness in partially thrombosed intracranial aneurysms in vivo with magnetization-prepared rapid acquisition gradient echo (MPRAGE) taken using 7T magnetic resonance imaging (MRI) and correlate the findings to wall instability.Sixteen partially thrombosed intracranial aneurysms were evaluated using a 7T whole-body MR system with nonenhanced MPRAGE. To normalize the thrombus signal intensity, its highest signal intensity was compared to that of the anterior corpus callosum of the same subject, and the signal intensity ratio was calculated. The correlation between the thrombus signal intensity ratio and the thickness of the aneurysm wall was analyzed. Furthermore, aneurysmal histopathological specimens from six tissue samples were compared with radiological findings to detect any correlation.The mean thrombus signal intensity ratio was 0.57 (standard error of the mean [SEM] 0.06, range 0.25-1.01). The mean thickness of the aneurysm wall was 1.25 (SEM 0.08, range 0.84-1.55) mm. The thrombus signal intensity ratio significantly correlated with the aneurysm wall thickness (p < 0.01). The aneurysm walls with the high thrombus signal intensity ratio were significantly thicker. In histopathological examinations, three patients with a hypointense thrombus had fewer macrophages infiltrating the thrombus and a thin degenerated aneurysmal wall. In contrast, three patients with a hyperintense thrombus had abundant macrophages infiltrating the thrombus.The thrombus signal intensity ratio in partially thrombosed intracranial aneurysms correlated with aneurysm wall thickness and histologic features, indicating wall instability.
000179063 536__ $$0G:(DE-HGF)POF4-315$$a315 - Bildgebung und Radioonkologie (POF4-315)$$cPOF4-315$$fPOF IV$$x0
000179063 588__ $$aDataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
000179063 650_7 $$2Other$$a7T magnetic resonance imaging
000179063 650_7 $$2Other$$aaneurysm wall
000179063 650_7 $$2Other$$amagnetization-prepared rapid acquisition gradient echo
000179063 650_7 $$2Other$$apartially thrombosed intracranial aneurysm
000179063 650_7 $$2Other$$athrombus
000179063 7001_ $$aMatsushige, Toshinori$$b1
000179063 7001_ $$aChen, Bixia$$b2
000179063 7001_ $$aGembruch, Oliver$$b3
000179063 7001_ $$aDammann, Philipp$$b4
000179063 7001_ $$aJabbarli, Ramazan$$b5
000179063 7001_ $$aForsting, Michael$$b6
000179063 7001_ $$aJunker, Andreas$$b7
000179063 7001_ $$aMaderwald, Stefan$$b8
000179063 7001_ $$aQuick, Harald H$$b9
000179063 7001_ $$0P:(DE-He78)022611a2317e4de40fd912e0a72293a8$$aLadd, Mark E$$b10$$udkfz
000179063 7001_ $$aSure, Ulrich$$b11
000179063 7001_ $$aWrede, Karsten H$$b12
000179063 773__ $$0PERI:(DE-600)2564214-5$$a10.3389/fneur.2022.758126$$gVol. 13, p. 758126$$p758126$$tFrontiers in neurology$$v13$$x1664-2295$$y2022
000179063 909CO $$ooai:inrepo02.dkfz.de:179063$$pVDB
000179063 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)022611a2317e4de40fd912e0a72293a8$$aDeutsches Krebsforschungszentrum$$b10$$kDKFZ
000179063 9131_ $$0G:(DE-HGF)POF4-315$$1G:(DE-HGF)POF4-310$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vBildgebung und Radioonkologie$$x0
000179063 9141_ $$y2022
000179063 915__ $$0LIC:(DE-HGF)CCBYNV$$2V:(DE-HGF)$$aCreative Commons Attribution CC BY (No Version)$$bDOAJ$$d2021-01-28
000179063 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-28
000179063 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-28
000179063 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2021-01-28
000179063 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2021-01-28
000179063 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bFRONT NEUROL : 2021$$d2022-11-18
000179063 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-18
000179063 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-18
000179063 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2021-05-11T13:11:28Z
000179063 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2021-05-11T13:11:28Z
000179063 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review$$d2021-05-11T13:11:28Z
000179063 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-18
000179063 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-18
000179063 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2022-11-18
000179063 9201_ $$0I:(DE-He78)E020-20160331$$kE020$$lE020 Med. Physik in der Radiologie$$x0
000179063 980__ $$ajournal
000179063 980__ $$aVDB
000179063 980__ $$aI:(DE-He78)E020-20160331
000179063 980__ $$aUNRESTRICTED