000179090 001__ 179090
000179090 005__ 20240229145532.0
000179090 0247_ $$2doi$$a10.3390/nu14051077
000179090 0247_ $$2pmid$$apmid:35268052
000179090 0247_ $$2pmc$$apmc:PMC8912739
000179090 0247_ $$2altmetric$$aaltmetric:123991148
000179090 037__ $$aDKFZ-2022-00455
000179090 041__ $$aEnglish
000179090 082__ $$a610
000179090 1001_ $$0P:(DE-He78)c392ec8a090dcfbe801f135a6212caf9$$aChen, Xuechen$$b0$$eFirst author$$udkfz
000179090 245__ $$aRed and Processed Meat Intake, Polygenic Risk Score, and Colorectal Cancer Risk.
000179090 260__ $$aBasel$$bMDPI$$c2022
000179090 3367_ $$2DRIVER$$aarticle
000179090 3367_ $$2DataCite$$aOutput Types/Journal article
000179090 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1647250279_16420
000179090 3367_ $$2BibTeX$$aARTICLE
000179090 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000179090 3367_ $$00$$2EndNote$$aJournal Article
000179090 500__ $$a#EA:C070#LA:C070#LA:C120#
000179090 520__ $$aHigh red and processed meat intake (RPMI) is an established risk factor for colorectal cancer (CRC). We aimed to assess the impact of RPMI on CRC risk according to and in comparison with genetically determined risk, which was quantified by a polygenic risk score (PRS). RPMI and potential confounders (ascertained by questionnaire) and a PRS (based on 140 CRC-related loci) were obtained from 5109 CRC cases and 4134 controls in a population-based case-control study. Associations of RPMI with CRC risk across PRS levels were assessed using logistic regression models and compared to effect estimates of PRS using 'genetic risk equivalent' (GRE), a novel metric for effective risk communication. RPMI multiple times/week, 1 time/day, and >1 time/day was associated with 19% (95% CI 1% to 41%), 41% (18% to 70%), and 73% (30% to 132%) increased CRC risk, respectively, when compared to RPMI ≤ 1 time/week. Associations were independent of PRS levels (pinteraction = 0.97). The effect of RPMI > 1 time/day was equivalent to the effect of having 42 percentiles higher PRS level (GRE 42, 95% CI 20-65). RPMI increases CRC risk regardless of PRS levels. Avoiding RPMI can compensate for a substantial proportion of polygenic risk for CRC.
000179090 536__ $$0G:(DE-HGF)POF4-313$$a313 - Krebsrisikofaktoren und Prävention (POF4-313)$$cPOF4-313$$fPOF IV$$x0
000179090 588__ $$aDataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
000179090 650_7 $$2Other$$acolorectal cancer
000179090 650_7 $$2Other$$agenetic risk equivalent
000179090 650_7 $$2Other$$apolygenic risk score
000179090 650_7 $$2Other$$ared and processed meat
000179090 7001_ $$0P:(DE-He78)6c5d058b7552d071a7fa4c5e943fff0f$$aHoffmeister, Michael$$b1$$udkfz
000179090 7001_ $$0P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2$$aBrenner, Hermann$$b2$$eLast author$$udkfz
000179090 773__ $$0PERI:(DE-600)2518386-2$$a10.3390/nu14051077$$gVol. 14, no. 5, p. 1077 -$$n5$$p1077$$tNutrients$$v14$$x2072-6643$$y2022
000179090 909CO $$ooai:inrepo02.dkfz.de:179090$$pVDB
000179090 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)c392ec8a090dcfbe801f135a6212caf9$$aDeutsches Krebsforschungszentrum$$b0$$kDKFZ
000179090 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)6c5d058b7552d071a7fa4c5e943fff0f$$aDeutsches Krebsforschungszentrum$$b1$$kDKFZ
000179090 9101_ $$0I:(DE-588b)2036810-0$$6P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2$$aDeutsches Krebsforschungszentrum$$b2$$kDKFZ
000179090 9131_ $$0G:(DE-HGF)POF4-313$$1G:(DE-HGF)POF4-310$$2G:(DE-HGF)POF4-300$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lKrebsforschung$$vKrebsrisikofaktoren und Prävention$$x0
000179090 9141_ $$y2022
000179090 915__ $$0LIC:(DE-HGF)CCBYNV$$2V:(DE-HGF)$$aCreative Commons Attribution CC BY (No Version)$$bDOAJ$$d2021-05-04
000179090 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-05-04
000179090 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2021-05-04
000179090 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-05-04
000179090 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2021-05-04
000179090 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2021-05-04
000179090 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2022-11-09
000179090 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2022-11-09
000179090 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2022-08-27T10:32:17Z
000179090 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2022-08-27T10:32:17Z
000179090 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review$$d2022-08-27T10:32:17Z
000179090 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2022-11-09
000179090 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2022-11-09
000179090 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2022-11-09
000179090 9202_ $$0I:(DE-He78)C070-20160331$$kC070$$lC070 Klinische Epidemiologie und Alternf.$$x0
000179090 9202_ $$0I:(DE-He78)C120-20160331$$kC120$$lPräventive Onkologie$$x1
000179090 9201_ $$0I:(DE-He78)C070-20160331$$kC070$$lC070 Klinische Epidemiologie und Alternf.$$x0
000179090 9201_ $$0I:(DE-He78)HD01-20160331$$kHD01$$lDKTK HD zentral$$x1
000179090 9201_ $$0I:(DE-He78)C120-20160331$$kC120$$lPräventive Onkologie$$x2
000179090 9200_ $$0I:(DE-He78)C070-20160331$$kC070$$lC070 Klinische Epidemiologie und Alternf.$$x0
000179090 980__ $$ajournal
000179090 980__ $$aVDB
000179090 980__ $$aI:(DE-He78)C070-20160331
000179090 980__ $$aI:(DE-He78)HD01-20160331
000179090 980__ $$aI:(DE-He78)C120-20160331
000179090 980__ $$aUNRESTRICTED