001     179090
005     20240229145532.0
024 7 _ |a 10.3390/nu14051077
|2 doi
024 7 _ |a pmid:35268052
|2 pmid
024 7 _ |a pmc:PMC8912739
|2 pmc
024 7 _ |a altmetric:123991148
|2 altmetric
037 _ _ |a DKFZ-2022-00455
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Chen, Xuechen
|0 P:(DE-He78)c392ec8a090dcfbe801f135a6212caf9
|b 0
|e First author
|u dkfz
245 _ _ |a Red and Processed Meat Intake, Polygenic Risk Score, and Colorectal Cancer Risk.
260 _ _ |a Basel
|c 2022
|b MDPI
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1647250279_16420
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a #EA:C070#LA:C070#LA:C120#
520 _ _ |a High red and processed meat intake (RPMI) is an established risk factor for colorectal cancer (CRC). We aimed to assess the impact of RPMI on CRC risk according to and in comparison with genetically determined risk, which was quantified by a polygenic risk score (PRS). RPMI and potential confounders (ascertained by questionnaire) and a PRS (based on 140 CRC-related loci) were obtained from 5109 CRC cases and 4134 controls in a population-based case-control study. Associations of RPMI with CRC risk across PRS levels were assessed using logistic regression models and compared to effect estimates of PRS using 'genetic risk equivalent' (GRE), a novel metric for effective risk communication. RPMI multiple times/week, 1 time/day, and >1 time/day was associated with 19% (95% CI 1% to 41%), 41% (18% to 70%), and 73% (30% to 132%) increased CRC risk, respectively, when compared to RPMI ≤ 1 time/week. Associations were independent of PRS levels (pinteraction = 0.97). The effect of RPMI > 1 time/day was equivalent to the effect of having 42 percentiles higher PRS level (GRE 42, 95% CI 20-65). RPMI increases CRC risk regardless of PRS levels. Avoiding RPMI can compensate for a substantial proportion of polygenic risk for CRC.
536 _ _ |a 313 - Krebsrisikofaktoren und Prävention (POF4-313)
|0 G:(DE-HGF)POF4-313
|c POF4-313
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, PubMed, , Journals: inrepo02.dkfz.de
650 _ 7 |a colorectal cancer
|2 Other
650 _ 7 |a genetic risk equivalent
|2 Other
650 _ 7 |a polygenic risk score
|2 Other
650 _ 7 |a red and processed meat
|2 Other
700 1 _ |a Hoffmeister, Michael
|0 P:(DE-He78)6c5d058b7552d071a7fa4c5e943fff0f
|b 1
|u dkfz
700 1 _ |a Brenner, Hermann
|0 P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2
|b 2
|e Last author
|u dkfz
773 _ _ |a 10.3390/nu14051077
|g Vol. 14, no. 5, p. 1077 -
|0 PERI:(DE-600)2518386-2
|n 5
|p 1077
|t Nutrients
|v 14
|y 2022
|x 2072-6643
909 C O |o oai:inrepo02.dkfz.de:179090
|p VDB
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 0
|6 P:(DE-He78)c392ec8a090dcfbe801f135a6212caf9
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 1
|6 P:(DE-He78)6c5d058b7552d071a7fa4c5e943fff0f
910 1 _ |a Deutsches Krebsforschungszentrum
|0 I:(DE-588b)2036810-0
|k DKFZ
|b 2
|6 P:(DE-He78)90d5535ff896e70eed81f4a4f6f22ae2
913 1 _ |a DE-HGF
|b Gesundheit
|l Krebsforschung
|1 G:(DE-HGF)POF4-310
|0 G:(DE-HGF)POF4-313
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-300
|4 G:(DE-HGF)POF
|v Krebsrisikofaktoren und Prävention
|x 0
914 1 _ |y 2022
915 _ _ |a Creative Commons Attribution CC BY (No Version)
|0 LIC:(DE-HGF)CCBYNV
|2 V:(DE-HGF)
|b DOAJ
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2021-05-04
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-05-04
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2021-05-04
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2022-11-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2022-11-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2022-08-27T10:32:17Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2022-08-27T10:32:17Z
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Blind peer review
|d 2022-08-27T10:32:17Z
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2022-11-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2022-11-09
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2022-11-09
920 2 _ |0 I:(DE-He78)C070-20160331
|k C070
|l C070 Klinische Epidemiologie und Alternf.
|x 0
920 2 _ |0 I:(DE-He78)C120-20160331
|k C120
|l Präventive Onkologie
|x 1
920 1 _ |0 I:(DE-He78)C070-20160331
|k C070
|l C070 Klinische Epidemiologie und Alternf.
|x 0
920 1 _ |0 I:(DE-He78)HD01-20160331
|k HD01
|l DKTK HD zentral
|x 1
920 1 _ |0 I:(DE-He78)C120-20160331
|k C120
|l Präventive Onkologie
|x 2
920 0 _ |0 I:(DE-He78)C070-20160331
|k C070
|l C070 Klinische Epidemiologie und Alternf.
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-He78)C070-20160331
980 _ _ |a I:(DE-He78)HD01-20160331
980 _ _ |a I:(DE-He78)C120-20160331
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21